In Vitro and In Vivo Toxicity of Several Fungicides and Timorex Gold Biofungicide to Pythuim aphanidermatum

  • Emil Meho Rekanović Institute of pesticides and environmental protection, Banatska 31 b, 11080 Belgrade
  • Milica Mihajlović Institute of pesticides and environmental protection, Banatska 31 b, 11080 Belgrade
  • Jovana Hrustić Institute of pesticides and environmental protection, Banatska 31 b, 11080 Belgrade
  • Brankica Tanović Institute of pesticides and environmental protection, Banatska 31 b, 11080 Belgrade
  • Ivana Potočnik Institute of pesticides and environmental protection, Banatska 31 b, 11080 Belgrade
  • Miloš Stepanović Institute of pesticides and environmental protection, Banatska 31 b, 11080 Belgrade
  • Svetlana Milijašević-Marčić Institute of pesticides and environmental protection, Banatska 31 b, 11080 Belgrade
Keywords: Biofungicide, Fungicides, In vivo, In vitro, Sensitivity, Pythium aphanidermatum,

Abstract


A survey of in vitro and in vivo sensitivity of Pythuim aphanidermatum to several commercial fungicides and a biofungicide was undertaken. An isolate of P. aphanidermatum pathogenic to pepper was collected from a naturally infested greenhouse soil from Smederevska Palanka, Serbia. The P. aphanidermatum isolate was sensitive to all tested products. The obtained EC50 values were as follows: 10.21 mg l-1 for propamocarb-hydrochloride, 302.65 mg l-1 for fosetyl-Al, 11.18 mg l-1 for mancozeb, 1.27 mg l-1 for mefenoxam, 0.05 mg l-1 for azoxystrobin, and 175.33 mg l-1 for tea tree oil. Under greenhouse conditions, fosetyl-Al was the most efficient fungicide among the tested substances (97.5%). The biofungicide tea tree oil (Timorex Gold) (35.0%) exhibited the lowest efficacy among the tested materials, but it was still significantly better than the untreated control plot. The efficacies of propamocarb-hydrochloride (Previcur 607 SL), mancozeb (Mankogal 80 WP), azoxystrobin (Quadris) and mefenoxam (Ridomil gold 480 SL), were 72.5%, 77.5%, 57.5% and 75.0%, respectively.

References

Abbasi, P.A., & Lazarovits, G. (2006). Seed Treatment with Phosphonate (AG3) Suppresses Pythium Damping-off of Cucumber Seedlings. Plant Disease, 90(4), 459-464. doi:10.1094/PD-90-0459

Brophy, J.J., Davies, N.W., Southwell, I.A., Stiff, I.A., & Williams, L.R. (1989). Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). Journal of Agricultural and Food Chemistry, 37, 1330-1335.

Carson, C.F., Hammer, K.A., & Riley, T.V. (2006). Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews, 19, 50-62.

Chatterton, S., Sutton, J.C., & Boland, G.J. (2004). Timing Pseudomonas chlororaphis applications to control Pythium aphanidermatum, Pythium dissotocum, and root rot in hydroponic peppers. Biological Control, 30, 360-373.

Chellemi, D.O., Mitchell, D.J., Kannwischer-Mitchell, M.E., Rayside, P.A., & Rosskopf, E.N. (2000). Pythium spp. associated with bell pepper production in Florida. Plant Disease, 84(12), 1271-1274. doi:10.1094/PDIS.2000.84.12.1271

Dick, M.W. (1990). Keys to Pythium. Reading, UK: University of Reading Press.

EPPO. (2004). Guidelines for the efficacy evaluation of plant protection products: Soil treatments against Pythium spp. – PP 1/148(2). In EPPO Standards: Guidelines for the efficacy evaluation of plant protection products. (pp. 157-159). Paris.

Fenn, M.E., & Coffey, M.D. (1984). Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phytopathology, 74(5), 606-611. doi:10.1094/Phyto-74-606

Finney, D.J. (1971). Probit analysis. Cambridge, UK: University Press.

FRAC (Fungicide Resistance Action Committee). (2010). FRAC Code List: Fungicides sorted by mode of action. Action Fungicide Resistance Commitee (FRAC). Retrieved from www.frac.info/ frac/publication/anhang/FRAC CODE LIST.pdf

Hart, P.H., Brand, C., Carson, C.F., Riley, T.V., Prager, R.H., & Finlay-Jones, J.J. (2000). Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), presses inflamatory mediator production by activated human monocytes. Inflammation Research, 49, 619-626.

Janjić, V., & Elezović, I. (Eds.). (2010). Pesticidi u poljoprivredi i šumarstvu u Srbiji. Beograd: Društvo za zaštitu bilja Srbije.

Lévesque, C.A., Harlton, C.E., & Cock, A.W. (1998). Identification of some Oomycetes by reverse dot blot hybridization. Phytopathology / Phytopathology, 88(3), 213-22. pmid:18944967. doi:10.1094/PHYTO.1998.88.3.213

Lewis, J.A., & Larkin, R.P. (1998). Formulation of the Biocontrol Fungus Cladorrhinum foecundissimum to Reduce Damping-Off Diseases Caused by Rhizoctonia solani and Pythium ultimum. Biological Control, 12, 182-190.

Löcher, F.J., & Lorenz, G. (1991). Methods for monitoring the sensitivity of Botrytis cinerea to dicarboximide fungicides. EPPO Bulletin, 21(2), 341-354. doi:10.1111/j.1365-2338.1991.tb01261.x

Mao, W., Lewis, J.A., Hebbar, P.K., & Lumsden, R.D. (1997). Seed treatment with a fungal or bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Disease, 81, 450-454.

Moorman, G.W., & Kim, S.H. (2004). Species of Pythium from greenhouses in Pennsylvania exhibit resistance to propamocarb and mefenoxam. Plant Disease, 88(6), 630-632. doi:10.1094/PDIS.2004.88.6.630

Moulin, F., Lemanceau, P., & Alabouvette, C. (1996). Suppression of Pythium root rot of cucumber by a fluorescent pseudomonad is related to reduced root colonization by Pythium aphanidermatum. Journal of Phytopathology, 144, 125-129.

Papavizas, G.C., O'Neill, N.R., & Lewis, J.A. (1978). Fungistatic activity of propyl-N-[adimethylaminopropyl) carbamate on Pythium spp. and its reversal by sterols. Phytopathology, 68(11), 1667-1671. doi:10.1094/Phyto-68-1667

Privredna komora Srbije. (2013). Retrieved from http://www.pks.rs/PrivredaSrbije.aspx?id=13&p=2& 2013 Feb 28.

Reuveni, M., Pipko, G., Neufeld, D., Finkelstein, E., Malka, B., & Hornik, Y. (2006). New organic formulations of essential tea tree oil for the control of plant diseases. Vegetable Crop News, 42, 77-85.

Suleiman, M.N. (2011). The in vitro chemical control of Pythium aphanidermatum, an agent of tomato root rots in the north central, Nigeria. Scientia Africana, 10(2), 48-54.

Tomlin C. (Ed.). (2009). The Pesticide Manual, 15th ed.

Farnham, UK: British Crop Protection Council.

Wang, P.H., Boo, L.M., Lin, Y.S., & Yeh, Y. (2002). Specific detection of Pythium aphanidermatum from hydroponic nutrient solution by booster PCR with DNA primers developed from mitochondrial DNA. Phytoparasitica, 30(5), 473-485. doi:10.1007/BF02979752

Waterhouse, G.M., & Waterston, J.M. (1966). Pythium aphanidermatum. In CMI Descriptions of Pathogenic Fungi and Bacteria. London, UK: The Eastern Press Ltd.

Watson, R.T., Albritton, D.T., Anderson, S.O., & Lee-Bapty, S. (1992). Methyl bromide, Its Atmospheric Science, Technology and Economics. In Montreal Protocol Assessment Suppl. (p. 234). Nairobi, Kenya: United Nations Environment Programme.

Wheeler, T.A., Howell, J.C., Cotton, R., & Porter, D. (2005). Pythium species associated with pod rot on west Texas peanuts and in vitro sensitivity of isolates to mefenoxam and azoxystrobin. Peanut Science, 32, 9-13.

Published
2013/08/16
Section
Original Scientific Paper