Oxidative stress response as biomarker of exposure of a freshwater invertebrate model organism (Unio mancus Lamarck, 1819) to antifouling copper pyrithione

Keywords: biocides, antifouling copper pyrithione, biomarkers, oxidative stress, freshwater mussel

Abstract


Sublethal effects of copper pyrithione (CuPT) on an invertebrate model organism, freshwater mussel (Unio mancus), were assessed using oxidative stress parameters and histopathology. The environmentally relevant concentration of 5 μg/l copper pyrithione was applied as a 96 h semi-static exposure. MDA levels in digestive gland (DG) significantly increased, compared to a control group (p < 0.001). Gill MDA levels also increased, but not significantly (p > 0.05). GSH level in DG increased significantly (p < 0.05), and gill tissue levels also  increased but not significantly (p > 0.05). Levels of SOD, GPx activities, and AOPP levels did not change significantly (p > 0.05). The most prominent histopathological alterations in the gills were haemocyte infiltration, lipofuscin aggregates and lamellar deformations with tubule degeneration and accumulated lipofuscin aggregates in DG tubules. CuPT impacts antioxidant defense systems even during sublethal exposure of Unio mancus as the freshwater model organism.

 

Author Biographies

Elif Paçal, Çankırı Karatekin University

Instructor.

Eldivan Vocational School of Health Services, Çankırı, Turkey

Burçin Aşkım Gümüş, Gazi University

Associate Professor

Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey

 

A. Çağlan Günal, Gazi University

Professor

Department of Biology Education, Gazi Education Faculty, Gazi University, Ankara, Turkey

Belda Erkmen, Aksaray University

Associate Professor

Department of Biology, Science and Letters Faculty, Aksaray University, Aksaray, Turkey

Pınar Arslan, Çankırı Karatekin University

Assistant Professor

Department of Molecular Biology, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey

Zuhal Yıldırım

Associate Professor

Etimesgut Public Health Laboratory, Etimesgut, Ankara, Turkey

References

A

Aarab, N., Godal, B.F., & Bechmann, R.K. (2011). Seasonal variation of histopathological and histochemical markers of PAH exposure in blue mussel (Mytilus edulis L.). Marine Environmental Research, 71(3),213-217. https://doi.org/10.1016/j.marenvres.2011.01.005

 

Akaishi, F.M., St-Jean, S.D., Bishay, F., Clarke, J., Rabitto, I.D.S., & de Oliveira Ribeiro, C.A. (2007). Immunological responses, histopathological finding and disease resistance of blue mussel (Mytilus edulis) exposed to treated and untreated municipal wastewater. Aquatic Toxicology, 82(1), 1-14. https://doi.org/10.1016/j.aquatox.2007.01.008

 

Almond, K.M., & Trombetta, L.D. (2016). The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos. Ecotoxicology, 25, 389-398.

 

Arai, T., Harino, H., Ohji, M., & Langston, W.J., Eds. (2009). Ecotoxicology of antifouling biocides (pp. 5-7, 24, 39, 40). Tokyo, Japan: Springer. doi: 10.1007/978-4-431-85709-9

 

Arch Chemicals. (August, 2008). Copper pyrithione. Product stewardship summary. Norwalk, CO, USA

 

Bao, V.W.W., Leung, K.M.Y., Qiu, J.W., & Lam, M.H.W. (2011). Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Marine Pollution Bulletin, 62(5), 1147-1151. https://doi.org/10.1016/j.marpolbul.2011.02.041

 

Bignell, J.P., Dodge, M.J., Feist, S.W., Lyons, B., Martin, P.D., Taylor, N.G.H., Stone, D., Travalent, L., & Stentiford, G.D. 2008. Mussel histopathology: effects of season, disease and species. Aquatic Biology, 2(1), 1-15.

 

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analitical Biochemistry, 72, 248-254.

 

Casini, A.F., Ferrali, M., Pompella, A., Maellaro, E., & Comporti, M. (1986). Lipid peroxidation and cellular damage in extrahepatic tissue of bromobenzeneintoxicated mice. American Journal of Pathology, 123(3), 520-531.

 

 Cossu, C., Doyotte, A., Babut, M., Exinger, A., & Vasseur, P. (2000). Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicology and Environmental Safety, 45(2),106-121.

 

Cui, Y.T., Teo, S.L.M., Leong, W., & Chai, C.L.L. (2014). Searching for “environmentally-benign” antifouling biocides. International Journal of Molecular Science, 15(6), 9255-9284. https://doi.org/10.3390/ijms15069255

 

De Las Heras, R., Rodriguez-Gil, J.L., Sauto, J.S.S., Sanchez, P.S., & Catala, M. (2018). Analysis of lipid peroxidation in animal and plant tissues as field-based biomarker in Mediterranean irrigated agroecosystems (Extremadura, Spain). Journal of Environmental Science and Health, Part B. Pesticides, Food Contaminants, and Agricultural Wastes. 53(9), 567-579. doi: 10.1080/03601234.2018.1473962

 

Dupraz, V., Stachowski-Haberkorn, S., Menard, D., Limon, G., Akcha, F., Budzinski, H., & Cedergreen, N. (2018). Combined effects of antifouling biocides on the growth of three marine microalgal species. Chemosphere, 209, 801-814.

 

Ellman, G.L. (1959). Tissue sulfhydryl groups. Archives of Biochemstry and Biophysics, 82(1), 70-77.

 

Faggio, C., Tsarpali, V., & Dailianis, S. (2018). Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Science of the Total Environment, 636, 220-229. https://doi.org/10.1016/j.scitotenv.2018.04.264

 

Ferreira-Rodriguez N. (2019). Spatial aggregation of native with non-native freshwater bivalves and activity depletion under summer heat waves: ‘dangerous liaisons’ in a climate change context. Hydrobiologia, 834(1), 75-85.

 

Flohe, L., & Gunzler, W.A. (1984). Assays of glutathione peroxidase. Methods in Enzymology, 105, 114-120. https://doi.org/10.1016/S0076-6879(84)05015-1

 

Ganser, A.M., Newton, T.J., & Haro, R.J. (2015). Effects of elevated water temperature on physiological responses in adult freshwater mussels. Freshwater Biology. 60(8), 1705-1716.

 

Geret, F., Jouan, A., Turpin, V., Bebianno, M.J., & Cosson, R.P. (2002). Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquatic Living Resources. 15(1), 61-66. https://doi.org/10.1016/S0990-7440(01)01147-0

 

Gittens, J.E., Smith, T.J., Suleiman, R., & Akid, R. (2013). Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnology Advances, 31(8), 1738-1753. https://doi.org/10.1016/j.biotechadv.2013.09.002

 

Gopalakrishnan, S., Huang, W.B., Wang, Q.W., Wu, M.L., Liu, J., & Wang, K.J. (2011). Effects of tributyltin and benzo[a]pyrene on the immune-associated activities of hemocytes and recovery responses in the gastropod abalone, Haliotis diversicolor. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 154(2), 120-128. https://doi.org/10.1016/j.cbpc.2011.04.004

 

Guidi, P., Bernardeschi, M., Scarcelli, V., Cantafora, E., Benedetti, M., Falleni, A., & Frenzilli, G. (2017). Lysosomal, genetic and chromosomal damage in haemocytes of the freshwater bivalve (Unio pictorum) exposed to polluted sediments from the River Cecina (Italy). Chemistry and Ecology, 33(6), 516-527. https://doi.org/10.1080/02757540.2017.1327044

 

Gutner-Hoch, E., Martins, R., Maia, F., Oliveira, T., Shpigel, M., Weis, M., ... Benayahu, Y. (2019). Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus. Environmental Pollution, 251, 530-537. https://doi.org/10.1016/j.envpol.2019.05.031

 

Hermenean, A., Damache, G., Albu, P., Ardelean, A., Ardelean, G., Ardelean, P.D. ... Dinischiotu, A. (2015). Histopatological alterations and oxidative stress in liver and kidney of Leuciscus cephalus following exposure to heavy metals in the Tur River, North Western Romania. Ecotoxicology and Environmental Safety, 119, 198-205. https://doi.org/10.1016/j.ecoenv.2015.05.029

 

Jonathan, M.P., Roy, P.D., Thangadurai, N., Srinivasalu, S., Rodriguez-Espinosa, P.F., Sarkar, S.K. ... Munoz-Sevilla, N.P. (2011). Metal concentrations in water and sediments from tourist beaches of Acapulco, Mexico. Marine Pollution Bulletine, 62(4), 845-850. https://doi.org/10.1016/j.marpolbul.2011.02.042

 

Kholodkevich, S.V., Sharov, A.N., Chuiko, G.M., Kuznetsova, T.V., Gapeeva, M.V., & Lozhkina, R.A. (2019). Quality assessment of freshwater ecosystems by the functional state of bivalved mollusks. Water Resources, 46(2), 249-257.

 

Koutsaftis, A., & Aoyama, I. (2007). Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Science of the Total Environment, 387(1-3), 166-174. https://doi.org/10.1016/j.scitotenv.2007.07.023

 

Koutsaftis, A., & Aoyama, I. (2008). Toxicity of diuron and copper pyrithione on the brine shrimp, Artemia franciscana: The effects of temperature and salinity. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43(14), 1581-1585. https://doi.org/10.1080/10934520802329794

 

Kurtel, H., Granger, D.N., Tso, A., & Grisham, M.B. (1992). Vulnerability of intestinal fluid to oxidant stress. American Journal of Physiology, Gastrointestinal and Liver Physiology, 263, G573-G578.

 

Lavtizar, V., Kimura, D., Asaoka, S., & Okamura, H. (2018). The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina. Ecotoxicology and Environmental Safety. 147, 132-138. https://doi.org/10.1016/j.ecoenv.2017.08.039

 

Li, A.J., Leung, P.T.Y., Bao, V.W.W., Yi, A.X.L., & Leung, K.M.Y. (2014). Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer. Ecotoxicology. 23(8),1564-1573.

 

Lopez-Galindo, C., Garrido, M.C., Casanueva, J.F., & Nebot, E. (2010). Degradation models and ecotoxicity in marine waters of two antifouling compounds: sodium hypochlorite and an alkylamine surfactant. Science of the Total Environment, 408(8), 1779-1785. https://doi.org/10.1016/j.scitotenv.2010.01.029

 

Lowe, D.M., & Clarke, K.R. (1989). Contaminant-induced changes in the structure of the digestive epithelium of Mytilus edulis. Aquatic Toxicology, 15(4), 345-358. https://doi.org/10.1016/0166-445X(89)90046-5

 

Martin-Diaz, M.L., Blasco, J., Sales, D., & Del-Valls, T.A. (2008). Field validation of a battery of biomarkers to assess sediment quality in Spanish ports. Environmental Pollution, 151(3), 631-640. https://doi.org/10.1016/j.envpol.2007.03.019

 

Martins, S.E., Fillmann, G., Lillicrap, A., & Thomas, K.V. (2018). Review: ecotoxicity of organic and organometallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling, 34(1), 34-52. https://doi.org/10.1080/08927014.2017.1404036

 

Mochida, K., Ito, K., Harino, H., Kakuno, A., & Fujii, K. (2006). Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environmental Toxicology and Chemistry, 25(11), 3058-3064.

 

Mochida, K., Ito, K., Harino, H., Onduka, T., Kakuno, A., & Fujii, K. (2008). Early life-stage toxicity test for copper pyrithione and induction of skeletal anomaly in a teleost, the mummichog (Fundulus heteroclitus). Environmental Toxicology and Chemistry, 27(2), 367-374. https://doi.org/10.1897/07-176R1.1

 

Muller-Karanassos, C., Turner, A., Arundel, W., Vance, T., Lindeque, P.K., & Cole, M. (2019). Antifouling paint particles in intertidal estuarine sediments from southwest England and their ingestion by the harbour ragworm, Hediste diversicolor. Environmental Pollution, 249, 163-170. https://doi.org/10.1016/j.envpol.2019.03.009

 

Newton, T.J., & Cope, W.G. (2006). Biomarker responses of unionid mussels to environmental contaminants. In: Farris, J.L., & Van Hassel, J.H., eds., Freshwater Bivalve Ecotoxicology (pp 257-284). Boca Raton, FL: CRC Press.

 

Nogueira, A.F., Pereira, J.L., Antunes, S.C., Goncalves, F.J.M., & Nunes, B. (2018). Effects of zinc pyrithione on biochemical parameters of the freshwater Asian clam Corbicula fluminea. Aquatic Toxicology. 204, 100-106. https://doi.org/10.1016/j.aquatox.2018.08.021

 

Nunes, B., & Costa, M. (2019). Study of the effects of zinc pyrithione in biochemical parameters of the Polychaeta Hediste diversicolor: evidences of neurotoxicity at ecologically relevant concentrations. Environmental Science and Pollution Research. 26(13), 13551-13559.

 

Okay, O.S. (2004). Antifouling iceren gemi boyalarinin uluslararasi uurallar cercevesinde kirletici etkilerinin incelenmesi (Examination of pollutant effects of antifouling ship paints within the framework of international rules). In: Gemi mühendisliği ve sanayimiz sempozyumu (in Turkish) (Ship Engineering and Industry Symposium, İTU Ayazağa Campus) Istanbul, Turkey: TMMOB Gemi Muhendisleri Odası (Turkish Chamber of Naval Architects and Marine Engineers). https://www.gmo.org.tr/en-EN/

 

Onduka, T., Mochida, K., Harino, H., Ito, K., Kakuno, A., & Fujii, K. (2010). Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Archives of Environmental Contamination and Toxicology, 58(4), 991-997.

 

Organization for Economic Co-operation and Development (OECD) (1993). OECD guidelines for testing of chemicals. Paris, France. https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm

 

Paglia, D.E., & Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erytrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70(1), 158-169. https://doi.org/10.5555/uri:pii:0022214367900765

 

Parihar, S.M., Javeri, T., Hemnani, T., Dubey, K.A., & Prakash, P. (1997). Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes Fossilis) to short-term elevated temperature. Journal of Thermal Biology, 22(2), 151-156. https://doi.org/10.1016/S0306-4565(97)00006-5

 

Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B. ... Freitas, R. (2019). Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. Aquatic Toxicology, 211, 181-192. https://doi.org/10.1016/j.aquatox.2019.03.017

 

Qian, P.Y., Chen, L., & Xu, Y. (2013). Mini review: Molecular mechanisms of antifouling compounds. Biofouling. 29(4), 381-400. https://doi.org/10.1080/08927014.2013.776546

 

Robledo, J.A.F., Yadavalli, R., Allam, B., Espinosa, E.P., Gerdol, M., Greco, S. ... Metzger, M.J. (2019). From the raw bar to the bench: Bivalves as models for human health. Developmental and Comparative Immunology, 92, 260-282. https://doi.org/10.1016/j.dci.2018.11.020

 

Romano, J.A., Rittschof, D., McClellan-Green, P.D., & Holm, E.R. (2010). Variation in toxicity of copper pyrithione among populations and families of the barnacle, Balanus amphitrite. Biofouling. 26(3), 341-347. https://doi.org/10.1080/08927010903511618.

 

Sarasquete, M.C., Gonzales de Canales, M.L., & Gimeno, S. (1992). Comparative histopathological alterations in the digestive gland of marine bivalves exposed to Cu and Cd. European Journal of Histochemistry, 36(2), 223-32.

 

Schiff, K., Brown, J., Diehl, D., & Greenstein, D. (2007). Extent and magnitude of copper contamination in marinas of the San Diego region, California, USA. Marine Pollution Bulletin, 54(3), 322-328. https://doi.org/10.1016/j.marpolbul.2006.10.013

 

Sepici-Dincel, A, Alparslan, Z.N., Benli-Karasu, A.C., Selvi, M., Sarıkaya, R., Ozkul, İ.A., & Erkoc, F. (2013). Hemolymph biochemical parameters reference intervals and total hemocyte counts of narrow clawed crayfish Astacus leptodactylus (Eschscholtz, 1823). Ecological Indicators. 24, 305-309.

 

Soroldoni, S., Abreu, F., Castro, I.B., Duarte, F.A., & Pinho, G.L.L. (2017). Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? Journal of Hazardous Materials, 330, 76-82. https://doi.org/10.1016/j.jhazmat.2017.02.001

 

Strand, J., & Jacobsen, J.A. (2005). Accumulation and trophic transfer of organotins in a marine food web from the Danish coastal waters. Science of the Total Environment, 350(1-3), 72-85.

 

Sun, Y., Oberley, L.W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3), 497-500. https://doi.org/10.1093/clinchem/34.3.497

 

Tresnakova, N., Gunal, A.C., Başaran-Kankılıc, G., Pacal, E., Tavşanoğlu, U.N., Uyar, R., & Erkoc, F. (2020). Sub-lethal toxicities of zinc pyrithione, copper pyrithione alone and in combination to the indicator mussel species Unio crassus Philipsson, 1788 (Bivalvia, Unionidae). Chemistry and Ecology, 36, 292-308. doi: 10.1080/02757540.2020.1735377

 

Turkish Official Gazette (Resmi Gazete) (1991). Su Kirliliği ve Kontrolü Yönetmeliği Numune Alma ve Analiz Metodları Tebliği. Zehirlilik Seyreltme Faktörü (ZSF) Tayini. Tarih: 7.1.1991, Sayı: 20106.

 

Van Hassel, J.H., & Farris, L.J. (2007). A review of the use of unionid mussels as biological indicators of ecosystem health 2. In: J.L. Farris & J.H. Van Hassel (edts), Freshwater bivalve ecotoxicology (pp 19-31). Boca Raton & Pensacola, FL: CRC Press & Society of Environmental Toxicology and Chemistry (SETAC).

 

Wang, H., Li, Y., Huang, H., Xu, X., & Wang, Y. (2011). Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test. Environmental Toxicology and Chemistry, 30(3), 692-703. https://doi.org/10.1002/etc.440

 

Wang, Y., Zhao, H., Shao, Y., Liu, J., Li, J., Luo, L., & Xing, M. (2018). Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken. Chemosphere, 206, 597-605. https://doi.org/10.1016/j.chemosphere.2018.05.013

 

Warford, L., Mason, C., Lonsdale, J., Bersuder, P., Blake, S., Evans, N., Thomas, B., & James, D. (2022). A reassessment of TBT action levels for determining the fate of dredged sediments in the United Kingdom. Marine Pollution Bulletin, 176, 113439. https://doi.org/10.1016/j.marpolbul.2022.113439

 

Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J. ... Descamps-Latscha, B. (1996). Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International, 49(5), 1304-1313. https://doi.org/10.1038/ki.1996.186

 

Xu, X., Fu, J., Wang, H., Zhang, B., Wang, X., & Wang, Y. (2011). Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin (Strongylocentrotus intermedius). Ecotoxicology, 20(2), 419-428.

 

Yamada, H. (2006). Toxicity and preliminary risk assessment of alternative antifouling biocides to aquatic organisms. In: Konstantinou, I.K. (Ed.), Antifouling Paint Biocides (pp 213-226). Berlin, Germany: Springer.

 

Yildirim, Z., Ucgun, N.I., & Yildirim, F. (2011). The role of oxidative stress and antioxidants in the pathogenesis of age-related macular degeneration. Clinics, 66(5), 743-746.

 

Published
2022/09/06
How to Cite
Paçal, E., Gümüş, B. A., Günal, A. Çağlan, Erkmen, B., Arslan, P., Yıldırım, Z., & Erkoç, F. (2022). Oxidative stress response as biomarker of exposure of a freshwater invertebrate model organism (Unio mancus Lamarck, 1819) to antifouling copper pyrithione. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 37(2), 63-76. https://doi.org/10.2298/PIF2202063P
Section
Original Scientific Paper