Can Sclerotinia stem and root rot be managed effectively without causing environmental imbalance in soil?
Abstract
Sclerotinia stem and root rot, caused by Sclerotinia sclerotiorum, is considered to be an important soil-borne disease of over 400 plant species, including a wide range of species important for agriculture. In vitro and in vivo sensitivity of S. sclerotiorum to several commercial fungicides and biofungicides was studied. The highest efficacy was achieved by boscalid (98%) and fluopyram (80%), and the lowest by a B. subtilis-based product (5%). The isolate was sensitive to all tested products in vitro. Considering the tested synthetic fungicides, fluopyram exhibited the highest toxicity (EC50=0.003 mg/l), while captan exhibited the lowest (EC50=8.94mg/l). Even lower efficacy was achieved by tea tree oil and B. subtilis-based products. The environmental impact of pesticides and biopesticides used for Sclerotinia control was assessed. Modeling of predicted environmental concentrations in soil (PECsoil), coupled with literature toxicity data, served for assessment of pesticides soil risks. A high long-term risk for earthworms was revealed for captan and thiophanate-methyl. Based on both efficacy and risk assessment results, fluopyram was found to have the best properties of all tested conventional pesticides, while tea tree oil exerted better performance than the Bacillus product. Further investigation of combined use of conventional and biopesticides might reveal new perspectives regarding effective Sclerotinia control, while simultaneously reducing negative environmental impact.
References
Normal
0
21
false
false
false
SR-LATN-RS
X-NONE
X-NONE
DefSemiHidden="false" DefQFormat="false" DefPriority="99"
LatentStyleCount="376">
UnhideWhenUsed="true" QFormat="true" Name="heading 2"/>
UnhideWhenUsed="true" QFormat="true" Name="heading 3"/>
UnhideWhenUsed="true" QFormat="true" Name="heading 4"/>
UnhideWhenUsed="true" QFormat="true" Name="heading 5"/>
UnhideWhenUsed="true" QFormat="true" Name="heading 6"/>
UnhideWhenUsed="true" QFormat="true" Name="heading 7"/>
UnhideWhenUsed="true" QFormat="true" Name="heading 8"/>
UnhideWhenUsed="true" QFormat="true" Name="heading 9"/>
Name="index 1"/>
Name="index 2"/>
Name="index 3"/>
Name="index 4"/>
Name="index 5"/>
Name="index 6"/>
Name="index 7"/>
Name="index 8"/>
Name="index 9"/>
UnhideWhenUsed="true" Name="toc 1"/>
UnhideWhenUsed="true" Name="toc 2"/>
UnhideWhenUsed="true" Name="toc 3"/>
UnhideWhenUsed="true" Name="toc 4"/>
UnhideWhenUsed="true" Name="toc 5"/>
UnhideWhenUsed="true" Name="toc 6"/>
UnhideWhenUsed="true" Name="toc 7"/>
UnhideWhenUsed="true" Name="toc 8"/>
UnhideWhenUsed="true" Name="toc 9"/>
Name="Normal Indent"/>
Name="footnote text"/>
Name="annotation text"/>
Name="header"/>
Name="footer"/>
Name="index heading"/>
UnhideWhenUsed="true" QFormat="true" Name="caption"/>
Name="table of figures"/>
Name="envelope address"/>
Name="envelope return"/>
Name="footnote reference"/>
Name="annotation reference"/>
Name="line number"/>
Name="page number"/>
Name="endnote reference"/>
Name="endnote text"/>
Name="table of authorities"/>
Name="macro"/>
Name="toa heading"/>
Name="List"/>
Name="List Bullet"/>
Name="List Number"/>
Name="List 2"/>
Name="List 3"/>
Name="List 4"/>
Name="List 5"/>
Name="List Bullet 2"/>
Name="List Bullet 3"/>
Name="List Bullet 4"/>
Name="List Bullet 5"/>
Name="List Number 2"/>
Name="List Number 3"/>
Name="List Number 4"/>
Name="List Number 5"/>
Name="Closing"/>
Name="Signature"/>
UnhideWhenUsed="true" Name="Default Paragraph Font"/>
Name="Body Text"/>
Name="Body Text Indent"/>
Name="List Continue"/>
Name="List Continue 2"/>
Name="List Continue 3"/>
Name="List Continue 4"/>
Name="List Continue 5"/>
Name="Message Header"/>
Name="Salutation"/>
Name="Date"/>
Name="Body Text First Indent"/>
Name="Body Text First Indent 2"/>
Name="Note Heading"/>
Name="Body Text 2"/>
Name="Body Text 3"/>
Name="Body Text Indent 2"/>
Name="Body Text Indent 3"/>
Name="Block Text"/>
Name="Hyperlink"/>
Name="FollowedHyperlink"/>
Name="Document Map"/>
Name="Plain Text"/>
Name="E-mail Signature"/>
Name="HTML Top of Form"/>
Name="HTML Bottom of Form"/>
Name="Normal (Web)"/>
Name="HTML Acronym"/>
Name="HTML Address"/>
Name="HTML Cite"/>
Name="HTML Code"/>
Name="HTML Definition"/>
Name="HTML Keyboard"/>
Name="HTML Preformatted"/>
Name="HTML Sample"/>
Name="HTML Typewriter"/>
Name="HTML Variable"/>
Name="Normal Table"/>
Name="annotation subject"/>
Name="No List"/>
Name="Outline List 1"/>
Name="Outline List 2"/>
Name="Outline List 3"/>
Name="Table Simple 1"/>
Name="Table Simple 2"/>
Name="Table Simple 3"/>
Name="Table Classic 1"/>
Name="Table Classic 2"/>
Name="Table Classic 3"/>
Name="Table Classic 4"/>
Name="Table Colorful 1"/>
Name="Table Colorful 2"/>
Name="Table Colorful 3"/>
Name="Table Columns 1"/>
Name="Table Columns 2"/>
Name="Table Columns 3"/>
Name="Table Columns 4"/>
Name="Table Columns 5"/>
Name="Table Grid 1"/>
Name="Table Grid 2"/>
Name="Table Grid 3"/>
Name="Table Grid 4"/>
Name="Table Grid 5"/>
Name="Table Grid 6"/>
Name="Table Grid 7"/>
Name="Table Grid 8"/>
Name="Table List 1"/>
Name="Table List 2"/>
Name="Table List 3"/>
Name="Table List 4"/>
Name="Table List 5"/>
Name="Table List 6"/>
Name="Table List 7"/>
Name="Table List 8"/>
Name="Table 3D effects 1"/>
Name="Table 3D effects 2"/>
Name="Table 3D effects 3"/>
Name="Table Contemporary"/>
Name="Table Elegant"/>
Name="Table Professional"/>
Name="Table Subtle 1"/>
Name="Table Subtle 2"/>
Name="Table Web 1"/>
Name="Table Web 2"/>
Name="Table Web 3"/>
Name="Balloon Text"/>
Name="Table Theme"/>
Name="List Paragraph"/>
Name="Intense Quote"/>
Name="Subtle Emphasis"/>
Name="Intense Emphasis"/>
Name="Subtle Reference"/>
Name="Intense Reference"/>
UnhideWhenUsed="true" Name="Bibliography"/>
UnhideWhenUsed="true" QFormat="true" Name="TOC Heading"/>
Name="Grid Table 1 Light Accent 1"/>
Name="Grid Table 6 Colorful Accent 1"/>
Name="Grid Table 7 Colorful Accent 1"/>
Name="Grid Table 1 Light Accent 2"/>
Name="Grid Table 6 Colorful Accent 2"/>
Name="Grid Table 7 Colorful Accent 2"/>
Name="Grid Table 1 Light Accent 3"/>
Name="Grid Table 6 Colorful Accent 3"/>
Name="Grid Table 7 Colorful Accent 3"/>
Name="Grid Table 1 Light Accent 4"/>
Name="Grid Table 6 Colorful Accent 4"/>
Name="Grid Table 7 Colorful Accent 4"/>
Name="Grid Table 1 Light Accent 5"/>
Name="Grid Table 6 Colorful Accent 5"/>
Name="Grid Table 7 Colorful Accent 5"/>
Name="Grid Table 1 Light Accent 6"/>
Name="Grid Table 6 Colorful Accent 6"/>
Name="Grid Table 7 Colorful Accent 6"/>
Name="List Table 1 Light Accent 1"/>
Name="List Table 6 Colorful Accent 1"/>
Name="List Table 7 Colorful Accent 1"/>
Name="List Table 1 Light Accent 2"/>
Name="List Table 6 Colorful Accent 2"/>
Name="List Table 7 Colorful Accent 2"/>
Name="List Table 1 Light Accent 3"/>
Name="List Table 6 Colorful Accent 3"/>
Name="List Table 7 Colorful Accent 3"/>
Name="List Table 1 Light Accent 4"/>
Name="List Table 6 Colorful Accent 4"/>
Name="List Table 7 Colorful Accent 4"/>
Name="List Table 1 Light Accent 5"/>
Name="List Table 6 Colorful Accent 5"/>
Name="List Table 7 Colorful Accent 5"/>
Name="List Table 1 Light Accent 6"/>
Name="List Table 6 Colorful Accent 6"/>
Name="List Table 7 Colorful Accent 6"/>
Name="Mention"/>
Name="Smart Hyperlink"/>
Name="Hashtag"/>
Name="Unresolved Mention"/>
Name="Smart Link"/>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Normalna tabela";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:8.0pt;
mso-para-margin-left:0cm;
line-height:107%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;
mso-font-kerning:1.0pt;
mso-ligatures:standardcontextual;
mso-fareast-language:EN-US;}
Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.
Arora, S., & Sahni, D. (2016). Pesticides effect on soil microbial ecology and enzyme activity – An overview. Journal of Applied and Natural Sciences, 8(2), 1126-1132.
Bart, S., Pelosi, C., Barraud, A., Pery, A.R.R., Cheviron, N., Grondin, V. ... Crouzet, O. (2019). Earthworms mitigate pesticide effects on soil microbial activities. Frontiers in Microbilogy 10, 1535.
Benelli, G., Pavela, R, Maggi, F., Wandjou, J.G.N., Fofie, G.B.Y., Kone-Bamba, D. ... Caprioli, G. (2019). Insecticidal activity of the essential oil and polar extract from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Industrial Crops and Products, 132, 377-385.
Benelli, G., Pavela, R., Petrelli, R., Cappellacci, L., Canale, A., Senthil-Nathan, S., & Maggi, F., (2018). Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Industrial Crops and Products, 124, 236-243.
Benigni, M., & Bompeix, G. (2010). Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture. Pest Management Science, 66(12), 1332-1336.
Boland, G.J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16(2), 93-108.
Bounatirou, S., Smiti, S., Miguel, M.G., Faleiro, L., Rejeb, M.N., Neffati, M. ... Pedro, L.G. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1), 146-155.
Bradley, C.A., Lamey, H.A., Endres, G.J., Henson, R.A., Hanson, B.K., McKay, R. ... Porter, P.M., (2006). Efficacy of fungicides for control of Sclerotinia stem rot of canola. Plant Disease, 90(9), 1129-1134.
Broadbent, P., Baker, K. F., Franks, N., & Holland, J. (1977). Effect of Bacillus spp. on increased growth of seedlings in steamed and in nontreated soil. Phytopathology, 67, 1027-1034.
Budge, S.P., & Whipps, J.M. (2001). Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology, 91(2), 221-227.
Carson, C.F., Hammer, K.A., & Riley, T.V. (2006). Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews Journal 19, 50-62.
Coley-Smith, J.R., & Cooke, R.C. (1971). Survival and germination of fungal sclerotia. Annual Review of Phytopathology, 9, 65-92.
D‘Ercole, N., Nipoti, P., Di Pillo, L., & Gavina, F. (2000). In vitro and in vivo tests of Trichoderma spp. as a biocontrol agent of Verticillium dahliae Kleb. in eggplants. In: Tjamos, E. C., Rowe, R. C., Heale, J. B., Fravel, D. R. (Eds.), Advances in Verticillium research and disease management (pp 260-263). St. Paul, MN, USA:. APS Press.
Dhingra, O.D., & Sinclair, J.B. (1995). Basic plant pathology methods. Boca Raton, FL, USA: CRC Press.
Edris, A.E., & Farrag, E.S. (2003). Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Food/Nahrung, 47(2), 117-121.
EFSA (2010). Conclusion on the peer review of the pesticide risk assessment of the active substance dazomet. EFSA Journal, 8(10), 1833.
EFSA (2012). Conclusion on the peer review of the pesticide risk assessment of the active substance extract from tea tree. EFSA Journal, 10(2), 2542.
EPPO (1997). Soil fungi attacking ornamental plants – PP 1/40(2). In: EPPO Standards - Guidelines for the efficacy evaluation of plant protection products (pp 62-66). Paris, France, OEPP/EPPO.
Finney, D.J. (1971). Probit analysis: a statistical treatment of the sigmoid response curve (3rd ed.). Cambridge, UK: Cambridge University Press.
Flieβbach, A., & Mader, P. (2004). Short- and long-term effects on soil microorganisms of two potato pesticide spraying sequences with either glufosinate or dinoseb as defoliants. Biology and Fertility of Soils, 40, 268-276.
Hu, S., Zhang, J., Zhang, Y., He, S., & Zhu, F. (2018). Baseline sensitivity and toxic actions of boscalid against Sclerotinia sclerotiorum. Crop Protection, 110, 83-90.
Huang, X.P., Luo, J., Li, B.X., Song, Y.F., Mu, W., & Liu, F. (2019). Bioactivity, physiological characteristics and efficacy of the SDHI fungicide pydiflumetofen against Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 160, 70-78.
Joshi, D., Kumar, S., & Kumar, M. (2021). Changes in soil microbial population dynamics in response to application of selected pesticides under a sugarcane agro-ecosystem. Journal of Eco-Friendly Agriculture, 16(2), 28.
Kalemba, D.A.A.K., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 10(10), 813-829.
Kedia, A., Prakash, B., Mishra, P.K., Singh, P., & Dubey, N.K. (2015). Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae) – a review. Journal of Food Science and Technology, 52(3), 1239-1257.
Kim, P.I, & Chung, K.C. (2004). Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiology Letters, 234(1), 177-183.
Knobloch, K., Pauli, A., Iberl, B., Weigand, H., & Weis, N. (1989). Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research, 1(3), 119-128.
Leroux, P., & Gredt, M. (1972). Etude de l’action in–vitro des fongicides, methode de l’incorporation ou milieu (pp 1-10). Versailles, France: Laboratorie de Phytopharmacie–INRA.
Liu, S., Fu, L., Hai, F., Jiang, J., Che, Z., Tian, Y., & Chen, G. (2018). Sensitivity to boscalid in field isolates of Sclerotinia sclerotiorum from rapeseed in Henan Province, China. Journal of Phytopathology, 166(4), 227-232.
Locher, F.J., & Lorenz, G. (1991). Methods for monitoring the sensitivity of Botrytis cinerea to dicarboximide fungicides. EPPO Bulletin, 21(2), 341-354.
Markham, J.L. (1999). Biological activity of tea tree oil. In I. Southwell & R. Lowe (Eds.), Tea tree, the genus Melaleuca (pp. 169-190). Amsterdam, Netherlands: Harwood Academic Publishers.
Martinez-Toledo, M.V., Salmeron, V., Rodelas, B., Pozo, C., & Gonzalez-Lopez, J. (1998). Effects of the fungicide Captan on some functional groups of soil microflora. Applied Soil Ecology, 7(3), 245-255.
Matheron, M.E., & Porchas, M. (2004). Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and vinclozolin on growth of Sclerotinia minor and S. Sclerotiorum and development of lettuce drop. Plant Disease, 88(6), 665-668.
Matsson, M., & Hederstedt, L. (2001). The carboxin-binding site on Paracoccus denitrificans succinate: quinone reductase identified by mutations. Journal of Bioenergetics and Biomembrane, 33(2), 99-105.
Meghana, D., Ramanamma, P., Rangaswamy, V., & Jaffer Mohiddin, G. (2017). Influence of novaluron and thiophanate methyl on microbial population in Groundnut (Arachis hypogaea. L) Soils. IJAR, 3(4), 566-571.
Meynell, G.G., Meynell, E., Mekler, L.B., Kriviskij, A.S., & Urbah, V.J. (1967). Experimental microbiology. Moscow, USSR: Mir.
Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., Stevanović, M., & Tanović, B. (2020). Effects of fungicides and biofungicides on Rhizoctonia solani, a pathogen of pepper. Pesticides and Phytomedicine, 35(2), 97-104.
Mueller, D.S., Dorrance, A.E., Derksen, R.C., Ozkan, E., Kurle, J.E., Grau, C.R. … Pedersen, W.L., 2002. Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Disease, 86, 26-31.
Pavela, R., Benelli, G., Pavoni, L., Bonacucina, G., Cespi, M., Cianfaglione, K. … Maggi, F. (2019). Microemulsions for delivery of Apiaceae essential oils – Towards highly effective and eco-friendly mosquito larvacides? Industrial Crops and Products, 129, 631-640.
Pavela, R., Morshedloo, M. R., Mumivand, H., Khorsand, G. J., Karami, A., Maggi, F. … Benelli, G. (2020). Phenolic monoterpen-rich essential oils from Apiaceae and Lamiaceae species: insecticidal activity and safety evaluation on non-target earthworms. Entomologia Generalis, 40(4), 421-435.
Purdy, L.H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69(8), 875-880.
Raveau, R., Fontaine, J., & Lounes-Hadj Sahraoui, A. (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9(3), 365.
Sanchez-Bayo, F. (2011). Impacts of agricultural pesticides on terrestrial ecosystems. In: Sanchez-Bayo, F., Van den Brink, P. J., Mann, R. M. (Eds.), Ecological impacts of toxic chemicals (pp 63-87). USA: Bentham Science Publishers.
Santisima-Trinidad, A.B.L., del Mar Montiel-Rozas, M., Diez-Rojo, M.A., Pascual, J.A., & Ros, M. (2018). Impact of foliar fungicides on target and non-target soil microbial communities in cucumber crops. Ecotoxicology and Environmental Safety, 166, 78-85.
Singh, M., Sharma, O.P., & Bhagat, S. (2014). Compability of promising Trichoderma spp. with pesticides. Pesticide Research Journal, 26(2), 217-220.
Soylu, S., Yigitbas, H., Soylu, E. M., & Kurt, Ş. (2007). Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. Journal of Applied Microbiology, 103(4), 1021-1030.
Swiader, M., Pronczuk, M., & Niemirowicz-Szczyt, K. (2002). Resistance of Polish lines and hybrids of watermelon [Citrullus lanatus (Th unb.) Matsum et Nakai] to Fusarium oxysporum at the seedling stage. Journal of Applied Genetics, 43(2), 161-170.
Tanović, B., Hrustić, J., Mihajlović, M., Grahovac, M., Stevanović, M., & Gašić, S. (2020). Effects of developed thyme and oregano essential oil formulations on Monilinia laxa and Monilinia fructicola. Pesticides and Phytomedicine, 35(1), 49-56.
Tejada, M., Gomez, I., Garcia-Martinez, A.M., Osta, P., & Parrado, J. (2011). Effects of prochloraz fungicide on soil enzymatic activities and bacterial communities. Ecotoxicology and Environmental Safety, 74(6), 1708-1714.
United Nations Environment Programme (UNEP) Ozone Secretariat (2006). Handbook for the Montreal protocol on substances that deplete the ozone layer (3th Edition). UNEP/Earthprint.
Waterhouse G.M., &.Waterston J.M., (1966). Phytophthora cactorum. Descriptions of pathogenic fungi and bacteria No. 111. Wallingford, UK: CAB International.
White, T.J., Bruns, T., Lee, S.J.W.T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications, 18(1), 315-322.
Xiong, D., Li, Y., Xiong, Y., Li, X., Xiao, Y., Qui, Z., & Xiao, Y. (2014). Influnce of boscalid on the activities of soil enzymes and soil respiration. European Journal of Soil Biology 61(4), 1-5.
Yang, D., Wang, B., Wang, J., Chen, Y., & Zhou, M. (2009). Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control, 51(1), 61-65.
Žabka, M., Pavela, R., Kovařikova, K., Třiska, J., Vrchotova, N., & Bednař, J. (2021). Antifungal and insecticidal potential of the essential oil from Ocimum sanctum L. against dangerous fungal and insect species and its safety for non-target useful soil species Eisenia fetida (Savihny, 1826). Plants, 10(10), 2180.
Zhang, Y., Xu, J., Dong, F., Liu, X., Wu, X., & Zheng, Y. (2014). Response of microbial community to a new fungicide fluopyram in the silty-loam agricultural soil. Ecotoxicology and Environmental Safety, 108, 273-280.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided, it is indicated if changes were made and the new work is distributed under the same license as the original.
Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Pesticidi i fitomedicina (Pesticides and Phytomedicine) and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.