Komparativna toksičnost spinetorama za Trialeurodes vaporariorum Westwood i parazitoida Encarsia formosa Gahan

  • Tanja M Drobnjakovic Institut za pesticide i zaštitu životne sredine, Banatska 31b, 11000 Beograd
  • Mirjana Prijović Institut za pesticide i zaštitu životne sredine, Banatska 31b, 11000 Beograd
  • Emanuele Porcu 2Department of Agriculture Food and Environment, University of Catania, via S. Sofia 100, 95123 Catania, Italy
  • Michele Ricupero Department of Agriculture Food and Environment, University of Catania, via S. Sofia 100, 95123 Catania
  • Gaetano Siscaro Department of Agriculture Food and Environment, University of Catania, via S. Sofia 100, 95123 Catania
  • Lucia Zappalà Department of Agriculture Food and Environment, University of Catania, via S. Sofia 100, 95123 Catania
  • Antonio Biondi Department of Agriculture Food and Environment, University of Catania, via S. Sofia 100, 95123 Catania
Ključne reči: bioinsekticid, Encarsia formosa, integralni koncept zaštite biljaka, indeks selektivnosti, bela leptirasta vaš

Sažetak


Uloga potencijalno selektivnih bioinsekticida u okviru integralnog koncepta zaštite biljaka, pored efikasnosti u suzbijanju štetočina, umnogome zavisi  i od njihove bezbednosti po neciljane organizme. Spinetoram je polu-sintetski analog mikrobiološki dobijenog bioinsekticida spinosada koji se koristi širom sveta u suzbijanju raznih poljoprivrednih štetočina, ali je procena rizika primene spinetorama po korisne artropode veoma slabo istražena. Štaviše, toksičnost spinetorama prema štetočini- beloj leptirastoj vaši Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), kao i/ili prema njenom efikasnom biološkom agensu, parazitoidu Encarsia formosa Gahan (Hymenoptera: Aphelinidae), nikada nije dokumentovana. U laboratorijskim uslovima, utvrđivana je akutna toksičnost (letalni efekti) insekticida na bazi spinetorama (25% a.m.) po razvojne životne stadijume (adulte, nimfe i jaja) bele leptiraste vaši, kao i po adulte i lutke parazitoida. Svi ogledi su izvedeni na temperaturi 27±1°C i relativnoj vlažnosti vazduha od 60±10%, uz fotoperiod 16:8h, u pet ponavljanja. U svim doza-odgovor biotestovima, insekticid na bazi spinetorama primenjen je pomoću Potter Spray Tower-a na lišće duvana smešteno na 1% sloju agara, u ventiliranim Petri šoljama. Adulti štetočine i parazitoida izlagani su dejstvu svežih rezidua spinetorama u period od 48 sati, dok su jaja i nimfe štetočine, kao i lutke parazitoida, direktno tretirani sa serijom koncentracija spinetorama, pokrivajući odgovore od 10-90% smrtnosti. Akutna toksičnost spinetorama prema E. formosa procenjena je kroz indekse selektivnosti, koji predstavljaju odnos između srednjih letalnih koncentracija dobijenih za parazitoida i štetočinu. U biotestovima akutne toksičnosti dobijene su sledeće srednje letalne koncentracije spinetorama: 4.593, 15.027 i 11.73 mg a.i./l za adulte, nimfe i jaja bele leptiraste vaši, respektivno, i 0.686 i 1.715 mg a.i./l za adulte i lutke parazitoida, respektivno. Analiza dobijenih rezultata kroz indekse selektivnosti koji su bili niži od 1, nagoveštava neselektivnu prirodu insekticida na bazi spinetorama, prema oba testirana životna stadijuma parazitoida. Sveobuhvatna determinacija rizika zajedničke primene spinetorama i E. formosa u okviru integralnog koncepta zaštite biljaka od bele leptiraste vaši zahteva i procenu subletalnih efekata, kao i dalje testiranje spinetorama u poljskim uslovima, sa naglaskom na populacione parametre parazitoida.  

 

 

Biografija autora

Tanja M Drobnjakovic, Institut za pesticide i zaštitu životne sredine, Banatska 31b, 11000 Beograd

Laboratory of Applied Entomology

Laboratorija za primenjenu entomologiju

Reference

Abbes, K., Biondi, A., Kurtulus, A., Ricupero, M., Russo, A., Siscaro, G. ... Zappala, L. (2015). Combined nontarget effects of insecticide and high temperature on the parasitoid Bracon nigricans. PloS ONE, 10(9), e0138411. doi:10.1371/journal.pone.0138411

 

Abd-Ella, A.A. (2015). Susceptibility of the pomegranate whitefly, Siphoninus phillyreae (Haliday)(Homoptera: Aleyrodidae) and its parasitoid, Encarsia inaron (Walker) (Hymenoptera: Aphelinidae) to certain insecticides under laboratory conditions. Egyptian Journal of Biological Pest Control, 25(3), 689-695.

 

Albajes, R., Lodovica Gullino, M., van Lenteren, J. C., & Elad, Y. (Eds.). (1999). Integrated pest and disease management in greenhouse crops. Dordrecht, Netherlands: Kluwer Academic Publisher.

 

Bacci, L., Crespo, A.L., Galvan, T.L., Pereira, E.J., Picanco, M.C., Silva, G.A., & Chediak, M. (2007). Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. Pest Management Science, 63(7), 699-706. doi.org/10.1002/ps.1393

 

Biondi, A., Mommaerts, V., Smagghe, G., Vinuela, E., Zappala, L., & Desneux, N. (2012). The non-target impact of spinosyns on beneficial arthropods. Pest Management Science, 68(12), 1523-1536. doi: 10.1002/ps.3396. doi: 10.1002/ps.3396

 

Biondi, A., Zappala, L., Stark, J.D., & Desneux, N. (2013). Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One, 8(9), e76548. doi: 10.1371/journal.pone.0076548

 

Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1987-1998. doi:10.1098/rstb.2010.0390

 

Chloridis, A., Downard, P., Dripps, J.E., Kaneshi, K., Lee, L.C., Min, Y.K., & Pavan, L.A. (2007). Spinetoram (XDE-175): a new spinosyn. In The BCPC congress, Proceedings of the XVI International Plant Protection Congress (pp 44-49). Glasgow, UK: British Crop Production Council.

 

Copping, L.G., & Menn, J.J. (2000). Biopesticides: a review of their action, applications and efficacy. Pest Management Science, 56(8), 651-676. doi:10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U

 

Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106. doi.org/10.1146/annurev.ento.52.110405.091440

 

Dripps, J.E., Boucher R.E., Chloridis A., Cleveland C.B., DeAmicis C.V., Gomez L.E. … Watson, G.B. (2011). The spinosyn insecticides. In O. L´opez & J. G. Fernandez-Bolanos (Eds), Green trends in insect control, Green chemistry series, Vol. 11 (pp 163-212). London, UK: Royal Society of Chemistry.

 

Drobnjaković, T., & Marčić, D. (2021). Effects of spirotetramat insecticide on life history traits and population growth of Encarsia formosa (Hymenoptera: Aphelinidae). Biocontrol Science and Technology, 31(6), 604-618. doi: 10.1080/09583157.2021.1873248

 

Drobnjaković, T., Marčić, D., Prijović, M., Perić, P., Milenković, S., & Bošković, J. (2018). Sublethal effects of NeemAzal-T/S botanical insecticide on Dutch and Serbian populations of Encarsia formosa (Hymenoptera: Aphelinidae). Biocontrol Science and Technology, 28(1), 1-19. doi:10.1080/09583157.2017.1409336

 

Drobnjaković, T., Prijović, M., Milenković, S. & Marčić, D. (2019). Sublethal effects of Beauveria bassiana-based mycopesticide on Dutch and Serbian populations of Encarsia formosa (Hymenoptera: Aphelinidae). Biocontrol Science and Technology, 29(10), 991-1008. doi:10.1080/09583157.2019.16352

 

EPPO (2004). Side-effects on Encarsia formosa, PP1/142(2). Efficacy evaluation of plant protection products. Paris, France: Europian and Mediterranean Plant Protection Organisation.

 

Finney, D. J. (1971). Probit analysis. Cambridge, UK: University Press.

 

Gerling, D., Alomar, O., & Arno, J. (2001). Biological control of Bemisia tabaci using predators and parasitoids. Crop Protection, 20(9), 779–799. doi:10.1016/S0261-2194(01)00111-9

 

Giunti, G., Benelli, G., Palmeri, V., Laudani, F., Ricupero, M., Ricciardi, R., ... Campolo, O. (2022). Non-target effects of essential oil-based biopesticides for crop protection: impact on natural enemies, pollinators, and soil invertebrates. Biological Control, 176, 105071. doi:10.1016/j.biocontrol.2022.105071

 

Hassan, S.A., Hafes, B., Degrande, P.E., & Herai, K. (1998). The side-effects of pesticides on the egg parasitoid Trichogramma cacoeciae Marchal (Hym., Trichogrammatidae), acute dose-response and persistence tests. Journal of Applied Entomology, 122(1-5), 569-573. doi.org/10.1111/j.1439-0418.1998.tb01547.x

 

Hernandez, R, Guo, K., Harris, M., & Liu, T.X. (2011). Effects of selected insecticides on adults of two parasitoid species of Liriomyza trifolii: Ganaspidium nigrimanus (Figitidae) and Neochrysocharis formosa (Eulophidae). Insect Science, 18(5), 512–520. doi.org/10.1111/j.1744-7917.2010.01391.x

 

Hoddle, M.S., van Driesche, R.G., Lyon, S.M., & Sanderson, J.P. (2001). Compatibility of insect growth regulators with Eretmocerus eremicus for whitefly control on poinsettias: I. Laboratory assays. Biological Control, 20(2), 122-131. doi:10.1006/bcon.2000.0885

 

Hoddle, M.S., van Driesche, R.G., & Sanderson, J.P. (1998). Biology and use of the whitefly parasitoid Encarsia formosa. Annual Review of Entomology, 43, 645-649. doi:10.1146/annurev.ento.43.1.645

 

IRAC (2023). The IRAC mode of action classification online. Retrieved from: https://irac-online.org/modes-of-action/

 

Kapantaidaki, D. E., Sadikoglou, E., Tsakireli, D., Kampanis, V., Stavrakaki, M., Schorn, C. … Tsagkarakou, A. (2018). Insecticide resistance in Trialeurodes vaporariorum populations and novel diagnostics for kdr mutations. Pest Management Science, 74(1), 59-69. doi: 10.1002/ps.4674

 

Kumar, J., Ramlal, A., Mallick, D., & Mishra V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1185. doi: 10.3390/plants10061185

 

Lefebvre, M., Bostanian, N.J., Thistlewood, H.M., Mauffette, Y., & Racette, G. (2011). A laboratory assessment of the toxic attributes of six ‘reduced risk insecticides’ on Galendromus occidentalis (Acari: Phytoseiidae). Chemosphere, 84(1), 25-30. doi.org/10.1016/j.chemosphere.2011.02.090

 

Li, S.J., Xue, X., Ahmed, M.Z., Ren, S.X., Du, Y.Z., Wu, J.H. … Qiu, B. L. (2011). Host plants and natural enemies of Bemisia tabaci (Homoptera: Aleyrodidae) in China. Insect Science, 18(1), 101-120. doi.org/10.1111/j.1744-7917.2010.01395.x

 

Mota-Sanchez, D. & Wise, J.C. (2023). Arthropod pesticide resistance database. Retrieved from https://www.pesticideresistance.org/

 

Parsaeyan, E., Saber, M., Safavi, S.A., Poorjavad, N., & Biondi, A. (2020). Side effects of chlorantraniliprole, phosalone and spinosad on the egg parasitoid, Trichogramma brassicae. Ecotoxicology, 29, 1052-1061. doi: 10.1007/s10646-020-02235-y

 

Patra, B., & Kumar Hath, T. (2022). Insecticide resistance in whiteflies Bemisia tabaci (Gennadius): Current global status. Insecticides. In Ramon Eduardo Rebolledo Ranz (Ed), Insecticides – Impact and benefits of its use for humanity (chapter 19). Temuco, Chile: Universidad de La Frontera. doi: 10.5772/intechopen.101954

 

Peterson, R.K.D. (2006). Comparing ecological risks of pesticides: the utility of a risk quotient ranking approach across refinements of exposure. Pest Management Science, 62, 46-56. doi: 10.1002/ps.1126

 

Preetha, G., Stanley, J., Suresh, S., & Samiyappan, R. (2010). Risk assessment of insecticides used in rice on mired bug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal). Chemosphere, 80(5), 498-503. doi:10.1016/j.chemosphere.2010.04.070

 

Ricupero, M., Abbes, K., Haddi, K., Kurtulus, A., Desneux, N., Russo, A. … Zappala, L. (2020). Combined thermal and insecticidal stresses on the generalist predator Macrolophus pygmaeus. Science of the Total Environment, 729, 138922. doi: 10.1016/j.scitotenv.2020.138922

 

Robertson, J.L., Russell, R.M., Preisler, H.K., & Savin, N.E. (Eds). (2007). Bioassays with arthropods (2nd ed). Boca Raton, FL, USA: CRC Press.

 

Robertson, J.L., & Worner, S.P. (1990). Population toxicology: suggestion for laboratory bioassays to predict pesticide efficacy. Journal of Economic Entomology, 83(1), 8-12. doi.org/10.1093/jee/83.1.8

 

Şengonca, C., & Liu, B. (2001). Infuence of mixed biocide GCSC-BtA on the pupae and adult stages of Apanteles plutellae Kurd. (Hym., Braconidae) and its host. Plutella xylostella (L.) (Lep., Plutellidae). Journal of Pesticide Science, 74(6), 145-149. doi.org/10.1046/j.1439-0280.2001.01033.x

 

Shankarganesh, K., Ricupero, M., & Sabtharishi S. (2022). Field evolved insecticide resistance in the cotton mealybug Phenacoccus solenopsis and its direct and indirect impacts on the endoparasitoid Aenasius arizonensis. Scientific Reports 12, 16764. doi: 10.1038/s41598-022-20779-3

 

Shimokawatoko Y., Sato, N., Yamaguchi, T., & Tanaka, H. (2012). Development of the novel insecticide spinetoram (DIANAR). Retrieved from https://www.sumitomochem.co.jp/english/rd/report/files/docs/01_2012e.pdf

 

Srivastava, M., Bosco, L., Funderburk, J., & Olson, S., & Weiss, A. (2008). Spinetoram is compatible with the key natural enemy of Frankliniella species thrips in pepper. Plant Health Progress, 9(1), 30. doi:10.1094/PHP-2008- 0118-02-RS

 

Stark, J.D., & Banken, J.A.O. (1999). Importance of population structure at the time of toxicant exposure. Ecotoxicology and Environmental Safety, 42(3), 282-287.

 

Stark, J.D., Tanigoshi, L., Bounfour, M., & Antonelli, A. (1997). Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotoxicology and Environmental Safety, 37(3), 273-279. doi.org/10.1006/eesa.1997.1552

 

Sugiyama, K., Katayama, H., & Saito, T. (2011). Effect of insecticides on the mortalities of three whitefly parasitoid species, Eretmocerus mundus, Eretmocerus eremicus and Encarsia formosa (Hymenoptera: Aphelinidae). Applied Entomology and Zoology, 46(3), 311–317. doi.org/10.1007/s13355-011-0044-z

 

van Lenteren, J.C., & Martin, G. (1999). Biological control of whiteflies. In R. Albajes, M. Lodovica Gullino, J.C. van Lenteren, & Y. Elad (Eds.), Integrated pest and disease management in greenhouse crops (pp 202-215). Dordrecht, Netherlands: Kluwer.

 

Villaverde, J. J., Sevilla-Moran, B., Sandin-Espana, P., Lopez-Goti, C., & Alonso-Prados, J. L. (2014). Biopesticides in the framework of the European pesticide regulation (EC) no. 1107/2009. Pest Management Science, 70, 2-5. doi:10.1002/ps.3663

 

Williams, T., Valle, J., & Viňuela, E. (2003). Is the naturally derived insecticide SpinosadR compatible with insect natural enemies? Biocontrol Science and Technology, 13(5), 459-475. doi.org/10.1080/0958315031000140956

 

Ministry of Science, Technological Development and Innovation of the Republic of Serbia, Grant No. 451-03-47/2023-01/200214

Objavljeno
2023/09/15
Rubrika
Originalni naučni članak