A novel Wolbachia ftsZ genotype in 'Candidatus Phytoplasma solani' planthopper vector Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae) associated with Convolvulus arvensis

  • Luka Stojanović Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Olivera Popov Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad
  • Jelena Stepanović Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Bojan Duduk Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Andrea Kosovac Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
Keywords: Hyalesthes obsoletus, ‘Candidatus Phytoplasma solani’, stolbur phytoplasma, Wolbachia, endosymbionts

Abstract


Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae) is a pan-European polyphagous
planthopper known as a significant vector of the plant pathogenic bacterium ‘Candidatus Phytoplasma solani’ (stolbur phytoplasma), which poses threats to various agricultural crops. A population of H. obsoletus associated with Convolvulus arvensis in Serbia was studied to investigate the presence and genetic diversity of Wolbachia, an endosymbiotic bacterium known for its promising biological control applications. Both insect-associated microorganisms, ‘Ca. P. solani’ and Wolbachia, were found in the assessed H. obsoletus population. The analyzed vector population had a ‘Ca. P. solani’ infection rate of 50%, while Wolbachia showed a high infection rate of 80%. Wolbachia presence displayed minimal variation across genders and was independent of individuals’ phytoplasma-infection status. Genotyping of the identified ‘Ca. P. solani’ strains revealed four previously described stamp genotypes (Rqg50/St1, Rqg31/St2, STOL/St4 and M5/St28). Notably, a single novel Wolbachia
ftsZ genotype, designated WHo1, was found in the assessed H. obsoletus population, providing a valuable insight into the genetic diversity of Wolbachia endosymbionts within the Cixiidae family. Phylogenetic analysis demonstrated intricate relationships between WHo1 and other Wolbachia strains infecting hosts from diverse hemipteran suborders. Although Wolbachia-based strategies show promise for phytoplasma vector control, further research is needed to elucidate its potential interactions with ‘Ca. P. solani’ and its effects on vector reproduction and fitness.

 

 

References

Aleksić, Ž., Šutić, D., & Aleksić, D. (1967). Ispitivanje intenziteta prenošenja stolbur virusa cikadom Hyalesthes obsoletus Sign. na neke biljke domaćine (Transmission intensity of stolbur virus by means of Hyalesthes obsoletus Sign. on some host plants). Zaštita bilja / Plant Protection, 93-95, 67-73.

Alma, A., Lessio, F., & Nickel, H. (2019). Insects as phytoplasma vectors: ecological and epidemiological aspects. In: A. Bertaccini, P.G. Weintraub, G.P. Rao, N. Mori (eds.), Phytoplasmas: Plant pathogenic bacteria-II: Transmission and management of Phytoplasma-associated diseases (pp 1-25). Singapore: Springer.

Aryan, A., Brader, G., Mortel, J., Pastar, M., & Riedle-Bauer, M. (2014). An abundant ‘Candidatus Phytoplasma solani’ tuf b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus. European Journal of Plant Pathology, 140, 213-227. https://doi.org/10.1007/s10658-014-0455-0

Baldo, L., Dunning Hotopp, J.C., Jolley, K.A., Bordenstein, S.R., Biber, S.A., Choudhury, R.R. ... & Werren, J.H. (2006). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 72(11), 7098-7110. https://doi.org/10.1128/AEM.00731-06

Bandelt, H.J., Forster, P., & Rohl, A. (1999). A. medianjoining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

Bressan, A., Semetey, O., Nusillard, B., Clair, D. & Boudon-Padieu, E. (2008). Insect vectors (Hemiptera: Cixiidae) and pathogens associated with the disease syndrome “basses richesses” of sugar beet in France. Plant Disease, 92, 113-119. https://doi.org/10.1094/PDIS-92-1-0113

Bressan, A., Arneodo, J., Simonato, M., Haines, W.P., & Boudon-Padieu, E. (2009). Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environmental Microbiology, 11(12), 3265-3279. https://doi.org/10.1111/j.1462-2920.2009.02055.x

Chuche, J., Danet, J.L., Theil, S., Foissac, X., Thiery, D., & Arricau-Bouvery, N. (2016). Microbiomes of the “Candidatus Phytoplasma solani” vectors Hyalesthes obsoletus signoret isolated from different host plants. Mitteilungen Klosterneuburg, 66, 22-39.

Ćurčić, Ž., Stepanović, J., Zubert, C., Taški-Ajduković, K., Kosovac, A., Rekanović, E. … & Duduk, B. (2021). Rubbery taproot disease of sugar beet in Serbia associated with ‘Candidatus Phytoplasma solani’. Plant Disease, 105(2), 255-263. https://doi.org/10.1094/PDIS-07-20-1602-RE

Duan, X.Z., Sun, J.T., Wang, L.T., Shu, X.H., Guo, Y., Keiichiro, M. … & Hong, X.Y. (2020). Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome, 8, 1-15. https://doi.org/10.1186/s40168-020-00878-x

Fabre, A., Danet, J.L., & Foissac, X. (2011). The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene, 472(1-2), 37-41. https://doi.org/10.1016/j.gene.2010.10.012

Gonella, E., Negri, I., Marzorati, M., Mandrioli, M., Sacchi, L., Pajoro, M. … & Bandi, C. (2011). Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of Bois noir in Vitis vinifera. Applied and Environmental Microbiology, 77(4), 1423-1435. https://doi.org/10.1128/AEM.02121-10

Gong, J.T., Li, Y., Li, T.P., Liang, Y., Hu, L., Zhang, D. … & Xi, Z. (2020). Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Current Biology, 30(24), 4837-4845.

Gong, J.T., Li, T.P., Wang, M.K., & Hong, X.Y. (2023). Wolbachia-based strategies for control of agricultural pests. Current Opinion in Insect Science, 101039. https://doi.org/10.1016/j.cois.2023.101039

Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., & Werren, J. H. (2008). How many species are infected with Wolbachia?–a statistical analysis of current data. FEMS Microbiology Letters, 281(2), 215-220. https://doi.org/10.1111/j.1574-6968.2008.01110.x

Hoch, H., & Remane R. (1985). Evolution und Speziation der Zikaden-Gattung Hyalesthes SIGNORET, 1865 (Homoptera Auchenorrhyncha Fulgoroidea Cixiidae). Marburger Entomologische Publikationen (Vol. 2). Germany: Goecke & Evers.

Holzinger, W.E., Kammerlander, I., & Nickel, H. (2003). The Auchenorrhyncha of Central Europe: Die Zikaden Mitteleuropas (Vol. 1). Leiden, The Netherlands: Brill.

Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.Y., & Fukatsu, T. (2010). Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences, 107(2), 769-774. https://doi.org/10.1073/pnas.0911476107

Iasur-Kruh, L., Naor, V., Zahavi, T., Ballinger, M.J., Sharon, R., Robinson, W.E. … & Zchori-Fein, E. (2017). Bacterial associates of Hyalesthes obsoletus (Hemiptera: Cixiidae), the insect vector of bois noir disease, with a focus on cultivable bacteria. Research in Microbiology, 168(1), 94-101.

Jović, J., Riedle-Bauer, M., & Chuche, J. (2019). Vector role of cixiids and other planthopper species. In: A. Bertaccini, P.G. Weintraub, G.P. Rao, N. Mori, Phytoplasmas: Plant pathogenic bacteria-II: Transmission and management of Phytoplasma-associated diseases, 79-113, Singapore: Springer.

Ju, J.F., Bing, X.L., Zhao, D.S., Guo, Y., Xi, Z., Hoffmann, A.A. … & Hong, X.Y. (2020). Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. The ISME Journal, 14(3), 676-687. https://doi.org/10.1038/s41396-019-0559-9

Kambris, Z., Cook, P.E., Phuc, H.K., & Sinkins, S.P. (2009). Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science, 326(5949), 134-136. Doi: 10.1126/science.117753

Kaul, C., Seitz, A., Maixner, M., & Johannesen, J. (2009). Infection of Bois-Noir tuf-type-I stolbur phytoplasma in Hyalesthes obsoletus (Hemiptera: Cixiidae) larvae and influence on larval size. Journal of Applied Entomology, 133(8), 596-601. https://doi.org/10.1111/j.1439-0418.2009.01406.x

Kessler, S., Schaerer, S., Delabays, N., Turlings, T.C., Trivellone, V., & Kehrli, P. (2011). Host plant preferences of Hyalesthes obsoletus, the vector of the grapevine yellows disease ‘bois noir’, in Switzerland. Entomologia Experimentalis et Applicata, 139(1), 60-67. https://doi.org/10.1111/j.1570-7458.2011.01107.x

Kosovac, A., Radonjić, S., Hrnčić, S., Krstić, O., Toševski, I., & Jović, J. (2016). Molecular tracing of the transmission routes of bois noir in Mediterranean vineyards of Montenegro and experimental evidence for the epidemiological role of Vitex agnus-castus (Lamiaceae) and associated Hyalesthes obsoletus (Cixiidae). Plant Pathology, 65(2), 285-298. https://doi.org/10.1111/ppa.12409

Kosovac, A., Johannesen, J., Krstić, O., Mitrović, M., Cvrković, T., Toševski, I., & Jović, J. (2018). Widespread plant specialization in the polyphagous planthopper Hyalesthes obsoletus (Cixiidae), a major vector of stolbur phytoplasma: Evidence of cryptic speciation. Plos One, 13(5), e0196969. https://doi.org/10.1371/journal.pone.0196969

Kosovac, A., Jakovljević, M., Krstić, O., Cvrković, T., Mitrović, M., Toševski, I., & Jović, J. (2019). Role of plant-specialized Hyalesthes obsoletus associated with Convolvulus arvensis and Crepis foetida in the transmission of ‘Candidatus Phytoplasma solani’-inflicted bois noir disease of grapevine in Serbia. European Journal of Plant Pathology, 153, 183-195. https://doi.org/10.1007/s10658-018-1553-1

Kosovac, A., Ćurčić, Ž., Stepanović, J., Rekanović, E., & Duduk, B. (2023a). Epidemiological role of novel and already known ‘Ca. P. solani’ cixiid vectors in rubbery taproot disease of sugar beet in Serbia. Scientific Reports, 13(1), 1433. https://doi.org/10.1038/s41598-023-28562-8

Kosovac, A., Rekanović, E., Ćurčić, Ž., Stepanović, J., & Duduk, B. (2023b). Plants under siege: Investigating the relevance of ‘Ca. P. solani’ cixiid vectors through a multi-test study. Plants, 12(24), 4157. https://doi.org/10.3390/plants12244157

Krstić, O. (2017). Uloga evolucionih interakcija između intracelularnog endosimbionta (Wolbachia) i fitoplazme (Flavescence dorée) u promenama komponenti adaptivne vrednosti i pravcima evolucije mitohondrijske DNK u prirodnim populacijama Dictyophara europaea (The role of evolutionary interactions between intracellular endosymbiont (Wolbachia) and phytoplasma (Flavescence dorée) on fitness components and evolution of mitochondrial DNA in natural populations Dictyophara europaea). (Doctoral dissertation). University of Belgrade, Faculty of Biology, Belgrade.

Krstić, O., Cvrković, T., Mitrović, M., Radonjić, S., Hrnčić, S., Toševski, I., & Jović, J. (2018). Wolbachia infection in natural populations of Dictyophara europaea, an alternative vector of grapevine Flavescence dorée phytoplasma: Effects and interactions. Annals of Applied Biology, 172(1), 47-64. https://doi.org/10.1111/aab.12400

Langer, M., & Maixner, M. (2004). Molecular characterization of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43(4), 191-199.

Lefoulon, E., Clark, T., Borveto, F., Perriat-Sanguinet, M., Moulia, C., Slatko, B. E., & Gavotte, L. (2020). Pseudoscorpion Wolbachia symbionts: diversity and evidence for a new supergroup S. BMC Microbiology, 20(1), 188.

Lo, N., Casiraghi, M., Salati, E., Bazzocchi, C., & Bandi, C. (2002). How many Wolbachia supergroups exist? Molecular Biology and Evolution, 19(3), 341-346. https://doi.org/10.1093/oxfordjournals.molbev.a004087

Mahuku, G. S. (2004). A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Molecular Biology Reporter, 22, 71-81. https://doi.org/10.1007/BF02773351

Mitrović, M., Jakovljević, M., Jović, J., Krstić, O., Kosovac, A., Trivellone, V. … & Cvrković, T. (2016). ‘Candidatus phytoplasma solani’ genotypes associated with potato stolbur in Serbia and the role of Hyalesthes obsoletus and Reptalus panzeri (hemiptera, cixiidae) as natural vectors. European Journal of Plant Pathology, 144, 619-630. https://doi.org/10.1007/s10658-015-0800-y

Mori, N., Pozzebon, A., Duso, C., Reggiani, N., & Pavan, F. (2016). Vineyard colonization by Hyalesthes obsoletus (Hemiptera: Cixiidae) induced by stinging nettle cut along surrounding ditches. Journal of Economic Entomology, 109(1), 49-56. https://doi.org/10.1093/jee/tov268

Moussa, A., Maixner, M., Stephan, D., Santoiemma, G., Passera, A., Mori, N., & Quaglino, F. (2021). Entomopathogenic nematodes and fungi to control Hyalesthes obsoletus (Hemiptera: Auchenorrhyncha: Cixiidae). BioControl, 66, 523-534. https://doi.org/10.1007/s10526-020-10076-1

Nickel, H. (2003). The leafhoppers and planthoppers of Germany (Hemiptera, Auchenorrhyncha): Patterns and strategies in a highly diverse group of phytophagous insects. Sofia-Moscow: Pensoft Publishers.

Noda, H., Koizumi, Y., Zhang, Q., & Deng, K. (2001). Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochemistry and Molecular Biology, 31, 727-737.

Quaglino, F., Zhao, Y., Casati, P., Bulgari, D., Bianco, P.A., Wei, W., & Davis, R.E. (2013). ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur-and bois noir-related diseases of plants. International journal of systematic and evolutionary microbiology, 63(8), 2879-2894. https://doi.org/10.1099/ijs.0.044750-0

Rees, D.J., Emerson, B.C., Oromi, P., & Hewitt, G.M. (2001). Mitochondrial DNA, ecology and morphology: interpreting the phylogeography of the Nesotes (Coleoptera: Tenebrionidae) of Gran Canaria (Canary Islands). Molecular Ecology, 10(2), 427-434. https://doi.org/10.1046/j.1365-294X.2001.01227.x

Riedle-Bauer, M., & Brader, G. (2023). Effects of insecticides and repellents on the spread of ‘Candidatus Phytoplasma solani’ under laboratory and field conditions. Journal of Plant Diseases and Protection, 130(5), 1057-1074. https://doi.org/10.1007/s41348-023-00768-y

Rinklef, A., Behrmann, S.C., Loff ler, D., Erner, J., Meyer, M.V., Lang, C. … Lee, K.Z. (2024). Prevalence in potato of ‘Candidatus Arsenophonus Phytopathogenicus’ and ‘Candidatus Phytoplasma Solani ’ and their transmission via adult Pentastiridius leporinus. Insects, 15(4), p.275. https://doi.org/10.3390/insects15040275

Ross, P.A., Turelli, M., & Hoffmann, A.A. (2019). Evolutionary ecology of Wolbachia releases for disease control. Annual Review of Genetics, 53, 93-116. https://doi.org/10.1146/annurev-genet-112618-043609

Schulenburg, J.H.G., Hurst, G.D.D., Huigens, T.M.E., van Meer, M.M.M., Jiggins, F.M., & Majerus, M.E.N. (2000). Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Molecular Biology and Evolution, 17(4), 584-600. https://doi.org/10.1093/oxfordjournals.molbev.a026338

Sforza, R., Bourgoin, T., Wilson, S.W., & Boudon-Padieu, E. (1999). Field observations, laboratory rearing and descriptions of immatures of the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). European Journal of Entomology, 96(4), 409-418.

Sharon, R., Soroker, V., Wesley, S.D., Zahavi, T., Harari, A., & Weintraub, P.G. (2005). Vitex agnus-castus is preferred host plant for Hyalesthes obsoletus. Journal of Chemical Ecology, 31, 1051-1063. https://doi.org/10.1007/s10886-005-4247-z

Shropshire, J. D., Leigh, B., & Bordenstein, S. R. (2020). Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? Elife, 9, e61989. https://doi.org/10.7554/eLife.61989

Stouthamer R., Breeuwer J.A.J, & Hurst G.D.D (1999). Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Review of Microbiology, 53, 71-102. https://doi.org/10.1146/annurev.micro.53.1.71

Sullivan, W. (2020). Vector control: Wolbachia expands its protective reach from humans to plants. Current Biology, 30(24), R1469–R1499. https://doi.org/10.1016/j.cub.2020.11.005

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673

Werren, J.H. (1997). Biology of Wolbachia. Annual Review of Entomology, 42, 587-609. https://doi.org/10.1146/annurev.ento.42.1.587

Werren, J.H., Baldo, L., & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741-751. https://doi.org/10.1038/nrmicro1969

Zug, R., & Hammerstein, P. (2015). Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews, 90(1), 89-111.

Published
2024/06/06
How to Cite
Stojanović, L., Popov, O., Stepanović, J., Duduk, B., & Kosovac, A. (2024). A novel Wolbachia ftsZ genotype in ’Candidatus Phytoplasma solani’ planthopper vector Hyalesthes obsoletus (Hemiptera: Fulgoromorpha: Cixiidae) associated with Convolvulus arvensis. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 39(1), 1-12. https://doi.org/10.2298/PIF2401001S
Section
Original Scientific Paper