Biofungicide Bacillus subtilis Ch-13 in the control of Hypomyces perniciosus (wet bubble disease) in industrial-scale mushroom cultivation

  • Ivana Potočnik Institut za pesticide i životnu sredinu
  • Svetlana Milijašević-Marčić Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Ljiljana Šantrić Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Jelena Luković Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Biljana Todorović Institute of Pesticides and Environmental Protection, Belgrade-Zemun
  • Emil Rekanović Institute of Pesticides and Environmental Protection, Belgrade-Zemun
Keywords: edible mushrooms, biocontrol agent, disease control

Abstract


The current study aimed to evaluate the efficacy of the biofungicide Bacillus subtilis Ch-13 in the suppression of natural infection of white button mushrooms (Agaricus bisporus) with Hypomyces perniciosus (causal agent of wet bubble disease), as well as its impact on mushroom yield in industrial-scale cultivation. The biofungicide B. subtilis Ch-13 was applied at a total concentration of 60 ml per m2 of casing layer in two different procedures — using either three (30 + 2 × 15 ml m-2) or two split doses (2 × 30 ml m-2) — and then its effects were compared to those of the fungicide prochloraz applied at a standard application rate. The efficacy of the biofungicide was significantly higher when applied in three split doses (29.7%), than in two (15.7%). Though the efficacy of B. subtilis Ch-13 (≈30%) against H. perniciosus was low in comparison to that of prochloraz (≈68%), B. subtilis Ch-13 slightly reduced wet bubble symptoms. Furthermore, the highest increase in mushroom yield was achieved when B. subtilis Ch-13 was applied in three split doses (14%), rather than two (2%), compared to the untreated control. In comparison to prochloraz, three and two split applications of B. subtilis Ch-13 enhanced mushroom yield by up to 17% and 4%, respectively. Regarding its efficacy in wet bubble disease control and augmentation of mushroom yield, B. subtilis Ch-13 was much more effective when applied in three split doses, than in two. Therefore, this study supports the application B. subtilis Ch-13 in three split doses (30 + 2 × 15 ml m-2, on the second day and two weeks after casing, and after the first fruiting flush, respectively) to suppress H. perniciosus and increase mushroom yield.

 

References

Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a

Australian Pesticides and Veterinary Medicines Authority (APVMA) (2025). Retrieved from https://portal.apvma.gov.au/es/permits

Büchner, R., Vörös, M., Allaga, H., Varga, A., Bartal, A., Szekeres, A., Varga, S., Bajzát, J., Bakos-Barczi, N., Misz, A., Csutorás, C., Hatvani, L., Vágvölgyi, C., & Kredics, L. (2022). Selection and characterization of a Bacillus strain for potential application in industrial production of white button mushroom (Agaricus bisporus). Agronomy, 12(2), 467. DOI: https://doi.org/10.3390/agronomy12020467

Carrasco, J., Navarro, M.J., & Gea, F.J. (2017). Cobweb, a serious pathology in mushroom crops: A review. Spanish Journal of Agricultural Research, 15(2), e10R01. DOI: https://doi.org/10.5424/sjar/2017152-10143

Carrasco, J., & Preston, G.M. (2020). Growing edible mushrooms: A conversation between bacteria and fungi. Environmental Microbiology, 22(3), 858-872. DOI: https://doi.org/10.1111/1462-2920.14765

Chebotar, V.K., Makarova, N.M., Shaposhnikov, A.I., & Kravchenko, L.V. (2009). Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of biopreparations. Applied Bichomistry and Microbiology, 45(4), 465-469. DOI: https://doi.org/10.1016/j.micres.2006.04.001

Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famoxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26(4), 469-475. DOI: https://doi.org/10.1016/j.cropro.2006.02.016

Clarke, J., McGuinness, B., Fitzpatrick, D., Kavanagh, K., & Grogan, H. (2024). Response of the mushroom pathogen Cladobotryum mycophilum to the fungicides prochloraz and metrafenone and two Bacillus-based biological control agents in mushroom crop trials. Crop Protection, 177, 106530. DOI: https://doi.org/10.1016/j.cropro.2023.106530

European and Mediterranean Plant Protection Organization (EPPO) (2010). Efficacy evaluation of fungicides: Fungal diseases on cultivated mushrooms of Agaricus spp. PP 1/270(1) in EPPO Standards. OEPP/EPPO Bulletin, 40(3), 270-273. DOI: https://doi.org/10.1111/j.1365-2338.2010.02384.x

Food and Drug Administration (FDA) (1999). Code of Federal Regulations, Title 21: Food and drugs. In: Chapter 1: Food and Drug Administration Department of Health and Human Services, Part 184: Direct food substances affirmed as Generally Recognized as Safe (pp. 892-896). Washington, D.C., USA: US Government Printing Office.

Gea, F.J., Navarro, M.J., & Tello, J.C. (2005). Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycological Research, 109(Pt 6), 741-745. DOI: https://doi.org/10.1017/s095375620500242x

Gea, F.J., Tello, J.C., & Navarro, M.J. (2010). Efficacy and effect on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa. Crop Protection, 29(9), 1021-1025. DOI: https://doi.org/10.1016/j.cropro.2010.06.006

Glamočlija, J., Soković, M., Ljaljević-Grbić, M., Vukojević, J., Milenković, I., & Van Griensven, L. (2008). Morphological characteristics and mycelial compatibility of different Mycogone perniciosa isolates. Journal of Microscopy, 232(3), 489-492. DOI: https://doi.org/10.1111/j.1365-2818.2008.02145.x

Grogan, H.M. (2006). Fungicide control of mushroom cobweb disease caused by Cladobotryum strains with different benzimidazole resistance profiles. Pest Management Science, 62(2), 153-161. DOI: https://doi.org/10.1002/ps.1133

Kayin, G.B., Öztüfekçi, S., Akin, H.F., Karaata, E.U., Katkat, A.V., & Turan, M.A. (2015). Effect of Bacillus subtilis Ch-13, nitrogen and phosphorus on yield, protein and gluten content of wheat (Triticum aestivum L.). Journal of Agricultural Faculty of Uludag University, 29(1), 19-28. https://dergipark.org.tr/tr/download/article-file/154225

Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., & Milijašević-Marčić, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163(2), 218-230. DOI: https://doi.org/10.1111/aab.12048

Liu, C., Sheng, J., Chen, L., Zhen, Y., Lee, D.Y.W., Yang, Y., Xu, M., & Shen, L. (2015). Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. Journal of Agriculture and Food Chemistry, 63(26), 6009-6018. DOI: https://doi.org/10.1021/acs.jafc.5b02218

Marčić, D., Milijašević-Marčić, S., Drobnjaković, T., Luković, J., Šantrić, Lj., Grujić, N., & Potočnik, I. (2025). Bioprotection of the button mushroom from pests and diseases. Agronomy, 15(6), 1323. DOI: https://doi.org/10.3390/agronomy15061323

Meyer, L., & Korsten, L. (2008). A nested PCR for the detection of Mycogone perniciosa causing wet bubble disease of white button mushrooms. Mushroom Science, 17(1), 554-564.

Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., & Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. DOI: https://doi.org/10.1007/s10658-016-1107-3

Navarro, M.J., Santos, M., Dianez, F., & Gea, F.J. (2023). Chemical and biological control of wet bubble disease (Hypomyces perniciosus) in mushroom crops. Agronomy, 13(7), 1672. DOI: https://doi.org/10.3390/agronomy13071672

Pandin, C., Védie, R., Rousseau, T., Le Coq, D., Aymerich, S., & Briandet, R. (2018). Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST 713 as biocontrol agent against Trichoderma aggressivum. Biological Control, 127, 39-54. DOI: https://doi.org./10.1016/j.biocontrol.2018.08.022

Potočnik, I., Vukojević, J., Stajić, M., Tanović, B., & Rekanović, E. (2010). Sensitivity of Mycogone perniciosa, pathogen of culinary-medicinal button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae), to selected fungicides and essential oils. International Journal of Medicinal Mushrooms, 12(1), 91-98. DOI: https://doi.org/10.1615/IntJMedMushr.v12.i1.90

Potočnik, I., Todorović, B., Rekanović, E., Luković, J., Paunović, D., & Milijašević-Marčić, S. (2018). Impact of Bacillus subtilis QST 713 mushroom grain spawn treatment on yield and green mould control. Pesticides and Phytomedicine, 33(3-4), 205-211. DOI: https.//doi.org./10.2298/PIF1804205P

Potočnik, I., Rekanović, E., Todorović, B., Luković, J., Paunović, D., Stanojević, O., & Milijašević-Marčić, S. (2019). The effects of casing soil treatment with Bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Pesticides and Phytomedicine, 34(1), 53-60. DOI: https://doi.org/10.2298/PIF1901053P

Potočnik, I., Todorović, B., Milijašević-Marčić, S., Luković, J., Kanižai Šarić, G., Majić, I., & Rekanović, E. (2021). A large-scale study on the effectiveness of a Bacillus subtilis Ch-13-based biofungicide against green mould disease and mushroom yield improvement. Pesticides and Phytomedicine, 36(2), 83-90. DOI: https://doi.org/10.2298/PIF2102083P

Regnier, T., & Combrinck, S. (2010). In vitro and in vivo screening of essential oils for the control of wet bubble disease of Agaricus bisporus. South African Journal of Botany, 76(4), 681-685. DOI: https://doi.org/10.1016/j.sajb.2010.07.018

Siwulski, M., Sobieralski, K., Górski, R., Lisiecka, J.M., & Sas-Golak, I. (2011). Temperature and pH impact on the mycelium growth of Mycogone perniciosa and Verticillium fungicola isolates derived from Polish and foreign mushroom growing houses. Journal of Plant Protection Research, 51(3), 268-272. DOI: https://10.2478/v10045-011-0044-6

Shi, N., Ruan, H., Jie, Y., Chen, F., & Du, Y. (2020). Sensitivity and efficacy of fungicides against wet bubble disease of Agaricus bisporus caused by Mycogone perniciosa. European Journal of Plant Pathology, 157(4), 873-885. DOI: https://doi.org/10.1007/s10658-020-02047-0

Sokal, R.R., & Rohlf, F.J. (1995). Biometry: The principles and practice of statistics in biological research (3rd edition). New York, NY, USA: W.H. Freeman and Company.

Stanojević, O., Berić, T., Potočnik, I., Rekanović, E., Stanković, S., & Milijašević-Marčić, S. (2019). Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Protection, 126(5), 104944. DOI: https://doi.org/10.1016/j.cropro.2019.104944

StatSoft Inc. (2004). STATISTICA (data analysis software system), version 7. Retrieved from https://www.statsoft.com

Umar, M.H., & Van Griensven, L.J.L.D. (1999). Studies on the morphogenesis of Agaricus bisporus: Dilema of normal versus abnormal fruit body development. Mycological Research, 103(10), 1235-1244. DOI: https://doi.org/10.1017/S0953756299008473

Védie, R., & Rousseau, T. (2008). Serenade biofungicide: une innovation mjeure dans les champignonnières françaises pour lutter contre Trichoderma aggressivum, agent de la moisissure verte du compost. La Lettre du CTC, 21, 1-2.

Published
2026/02/09
How to Cite
Potočnik, I., Milijašević-Marčić, S., Šantrić, L., Luković, J., Todorović, B., & Rekanović, E. (2026). Biofungicide Bacillus subtilis Ch-13 in the control of Hypomyces perniciosus (wet bubble disease) in industrial-scale mushroom cultivation. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 40(2-3), 73-82. https://doi.org/10.2298/PIF2503073P
Section
Original Scientific Paper