Botrytis cinerea in raspberry in Serbia I: Morphological and molecular characterization

  • Brankica Borko Tanović Institute of Pesticides and Environmental Protection, Belgrade
  • Jovana Hrustić Institute of Pesticides and Environmental Protection, Banatska 31b, Belgrade
  • Milica Mihajlović Institute of Pesticides and Environmental Protection, Banatska 31b, Belgrade
  • Mila Grahovac University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad
  • Goran Delibašić University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade
Keywords: Botrytis cinerea, Raspberries, Serbia,

Abstract


Morphological and molecular characterisation of 130 isolates of Botrytis cinerea, derived
from raspberry fruit originating from six commercial fields in a raspberry growing region
of Serbia (locations: Požega, Prilike, Arilje, Ivanjica, Šabac and Valjevo) was performed. The results showed that all isolates formed white, uniform, aerial mycelia with entire margin on PDA medium. First morphological differences among the isolates appeared after six days of incubation. Three-week old isolates were grouped into eight distinct morphological types – four mycelial and four sclerotial. Mostly, they were of sclerotial type (81.5%) and the most frequently found was an S3 type, which formed large irregularly placed sclerotia. This type was dominant in five of six investigated locations and represented 45-65% of the isolates. The least frequent was the mycelial type M3 (0.7% of the isolates) characterized by mycelial masses.
The presence of Boty and/or Flipper transposons was detected in isolates originating
from all investigated locations. It was discovered that the B. cinerea population in raspberry in Serbia, besides the well-described genetically isolated sympatric species transposa (43.1%) and vacuma (10.8%), contains also another two, boty (44.6%) and flipper (1.5%) species with only one transposon (either Boty or Flipper) in the genome. In addition, it was revealed that all isolates from raspberry collected in Serbia, transposa, vacuma, boty or flipper, are sensitive or weakly resistant to fenhexamid and therefore belong to the B. cinerea genetical Group II.

References

Achleitner, D. (2008). Investigations of latent infection of grape bunches with Botrytis cinerea. Dissertation zur Erlangung des Doktorgrades, Institut für flanzenschutz Universität für Bodenkultur, Wien, Austria.

Albertini, C., Thebaud, G., Fournier, E., & Leroux, P. (2002). Eburicol 14α-demethylase gene (CYP51) polymorphism and speciation in Botrytis cinerea. Mycological Research, 106, 1171-1178.

Alfonso, C., Raposo, R., & Malgarejo, P. (2000). Genetic diversity in Botrytis cinerea populations on vegetative crops in greenhouses in south-eastern Spain. Plant Pathology, 49, 243-251.

Anonymous (2013). Census of agriculture 2012–Agriculture in the Republic of Serbia I. Belgrade, Serbia: Statistical Office of the Republic of Serbia.

Baraldi, E., Bertolini, P., Chierici, E., Trufelli, B., & Luiselli, D. (2002). Genetic diversity between Botrytis cinerea isolates from unstored and cold stored kiwi fruit. Journal of Phytopathology, 150, 629-635.

Beever, R.E., & Weeds, P.L. (2004). Taxonomy and genetic variation of Botrytis and Botryotinia. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen, (Eds.), Botrytis: Biology, pathology and control (pp. 29-52). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Ben Ahmed, D., & Hamada, W. (2005). Genetic diversity of some Tunisian Botrytis cinerea isolates using molecular markers [Vitis vinifera L.; Lycopersicon esculentum Mill.; Cucumis sativus L.; Allium cepa L.; Fragaria x ananassa Duch.; Gerbera; Rosa; Tunisia]. Phytopathology Mediterranea, 44, 300-306.

Büttner, P., Koch, F., Voigt ,K., Quidde, T., Risch, S., Blaich, R., Bruckner, B., & Tudzynski P. (1994). Variations in ploidy among isolates of Botrytis cinerea: Implications for genetic and molecular analysis. Current Genetics, 25, 445-450.

Chardonnet, C.O., Sams, C.E., Trigiano, R.N., & Conway, W.S. (2000). Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology, 90, 769-774.

Coarer, M. (2003). Genetic variability of Botrytis: Results in the Loire Valley. Progres Agricole et Viticole, 120, 211-213.

Decognet, V., Bardin, M., Walker, A.S., Fermaud, M., & Nicot, P. (2007). Genetic structure of Botrytis cinerea populations from vegetable greenhouses in France. In Book of abstracts of XIV International Botrytis Symposium (pp. 35). Cape Town, South Africa.

De Miccolis Angelini, R.M., Pollastro, S., De Guido, M.A., & Faretra, F. (2006). Dynamics of vacuma and transposa sub-populations of Botryotinia fuckeliana in vineyards. Journal of Plant Pathology, 88, S19.

Di Lena, P., Marciano, P., & Magro, P. (1981). Comparative investigation on morfological and physiological features of three isolates of Botrytis cinerea. Phytopathologische Zeitschrift, 100, 203-211.

Diolez A., Marches F., Fortini D., & Brygoo Y. (1995). Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Applied and Environmental Microbiology, 61,103-108.

Ellis, M.B., & Waller, J.M. (1974). Sclerotinia fuckeliana (conidial state Botrytis cinerea). In Descriptions of Pathogenic Fungi and Bacteria, No.431. Kew, Surrey, UK: Commonwealth Mycolgoical Institute.

FAOSTAT (2014). Food and Agriculture Organisation of the United Nations. http://faostat3.fao.org/home/index.html. Accessesed: August 2014.

Faretra, F., Antonacci, E., & Pollastro, S. (1988). Improvement of the technique used for obtaining apothecia of Botryotinia fuckeliana (Botrytis cinerea) under controlled conditions. Annals of Microbiology, 38, 29-40.

Fekete, E., Fekete, E., Irinyi, L., Karaffa, L., Árnyasi, M., Asadollahi, M., & Sándor, E (2012). Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary. Microbiological Research, 167, 283-291.

Fournier, E., Giraud, T., & Brygoo, Y. (2005). Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia, 97, 1251–1267.

Fournier, E., Levis, C., Fortyni, D., Leroux, P., Giraud, T., & Brygoo, Y. (2003). Characterisation of Bc-hch, the Botrytis cinerea homolog of Neurospora crassa het-c vegetative incopatibility locus and its use as a population marker. Mycologia, 95, 251-261.

Gepp, V., Rebellato, J., Silvera, E., Gonzalez,P., Vero, S., & Ferreira, Y. (2007). Preliminary results of morphological, genetic and fungicide resistance characterisation of Botrytis cinerea isolates from Urugay. In Book of abstracts of XIV International Botrytis Symposium (pp. 36). Cape Town, South Africa.

Giraud, T., Fortini, D., Levis, C., Lamarque, C., Leroux, P., Lobuglio, K., & Brygoo,Y. (1999). Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology, 89, 967-973.

Giraud T., Fortini D., Levis C., Leroux P., & Brygoo Y. (1997). RFLP markers show fenetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology and Evolution, 14, 1177-1185.

Giraud, T., Levis, C., Fortini, D., Leroux, P., & Brygoo, Y. (1998). Several species hide behind the name of Botrytis cinerea! A study of fungal population in Champagne vineyards. Phytoma, 504, 56-60.

Grindle, M. (1979). Phenotypic differences between natural and induced variants of Botrytis cinerea. Journal of General Microbiology, 111, 109-120.

Hansen, H.N., & Smith, R.E. (1932). The mechanism of variation in imperfect fungi: Botrytis cinerea. Phytopathology, 22, 953-964.

Harrington, T.C., & Wingfield, B.D. (1995). A PCR-based identification method for species of Armillaria. Mycologia, 87, 280-288.

Isenegger, D.A., Ades, P.K., Ford, R., & Taylor P.W.J. (2008). Status of the Botrytis cinerea species complex and microsatellite analysis of transposon types in South Asia and Australia. Fungal Diversity, 29, 17-26.

Kerssies, A., Bosker-van Zessen, A.I., Wagemakers, C.A.M., & Van Kan, J.A.L. (1997). Variation in pathogenicity and DNA polymorphism among Botrytis cinerea isolates sampled inside and outside a glasshouse. Plant Disease, 81, 781-786.

Leone, G. (1990). In vivo and in vitro phosphate-dependent polygalacturonase production by different isolates of Botrytis cinerea. Mycological Research, 94, 1039-1045.

Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen, (Eds.), Botrytis: Biology, pathology and control (pp. 195-222). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Levis C., Fortini D., & Brygoo, Y. (1997). Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Molecular Genetics and Genomics, 254, 674-680.

Lorbeer J.W. (1980). Variation in Botrytis and Botryotinia. In J.R. Coley-Smith, K.Verhoeff, & W.R. Jarvis (Eds.), The biology of Botrytis. London, UK: Academic Press.

Ma, Z., & Michailides, T.J. (2005). Genetic structure of Botrytis cinerea populations from different host plants in California. Plant Disease, 89, 1083-1089.

Martinez, F., Blancard, D., Lecomte, P., Levis, C., Dubos, B., & Fermaud, M. (2003). Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. European Journal of Plant Pathology, 109, 479-488.

Martinez, F., Dubos, B., & Fermaud, M. (2005). The role of saprotrophy and virulence in the population dynamics of Botrytis cinerea in vineyards. Phytopathology, 95, 692-700.

McDonald, J.F. (1993). Evolution and consequences of transposable elements. Current Opinion in Genetics and Development, 3, 855-864.

Milićević, T., Topalovec-Pintarić S., Cvjetkovič, B., Ivić, D., & Duralija, B. (2006). Sympatric subpopulations of Botrytis cinerea on strawberries based on the content of transposable elements and their connection with resistance to Botryticides. Acta Horticulture, 708, 115-118.

Muñoz G., Hinrichsen P., Brygoo Y., & Gigaud T. (2002). Genetic characterisation of Botrytis cinerea populations in Chile. Mycological Research, 106, 596-601.

Nikolić, M., Ivanović, M., Milenković, S., Milivojević, J., & Milutinović, M. (2008). The state and prospects of raspberry production in Serbia. Acta Horticulturae, 777, 243-249.

Nikolić, M., &Tanović, B. (2012). Rubus and ribes industry in Serbia: A production model for developing countries. Acta Horticulturae, 946, 405-412.

Pollastro, S., DeMiccolis Angelini, R.M., Rotolo, C., Habib, W., & Faretra, F. (2007). Characterisation of vacuma and transposa biotypes of Botryotinia fuckeliana. In Book of abstracts of XIV International Botrytis Symposium (pp. 37). Cape Town, South Africa.

Stehman, C., & De Waard, M.A. (1996). Sensitivity of populations of Botrytis cinerea to triazoles, benomyl and vinclozolin. European Journal of Plant Pathology, 102, 171-180.

Tanović B., Delibašić G., Milivojević J., & Nikolić M. (2009). Characterization of Botrytis cinerea isolates from small fruits and grapevine in Serbia. Archives of Biological Sciences, 61(3), 419-429.

Topalovec-Pintarić S., Miličević T., & Cvjetković B. (2004). Genetic diversity and dynamic of pyrimethanil-resistant phenotype in population of Botrytis cinerea Pers.:Fr. in one wine-growing area in Croatia. Journal of Plant Diseases and Protection, 111, 451-460.

Vaczy, K.Z. (2009). Examination of Botrytis cinerea populations in the Eger wine region. Egetemi doktori (PhD). Debreceni Egietem Juhasz Nagy Pal Doktori Iskola, Debrecen, Hungry.

Vaczy, K.Z., Druzhinina, I.S., Kubicek, C.P., Karaffa, L., Gal, L., Kovics, G.J., & Sandor, E. (2006). Analysis of Botrytis cinerea populations in the Eger and Tokaj wine regions - a multiloci approach. In Book of abstracts of European Congress on Fungal Genetics, ECFG-8 (pp. 413). Vienna, Austria.

Van der Vlugt-Bergmans, C.J.B. (1996). Genetic variation and pathogenicity of Botrytis cinerea. Proefschrift Wageningen.-Met lit. opg. Met samenvatting in het, Nederlands.

Vignutelli, A., Hilber-Bodmer, M., & Hilber, U.W. (2002). Genetic analysis of resistance to the phenylpyrrole fludioxonil and the dicarboximide vinclozolin in Botryotinia fuckeliana (Botrytis cinerea). Mycological Research, 106, 329.

White, T.J., Bruns, T., Lee, S., & Taylor, T. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications (pp. 315-322). San Diego, USA: Academic Press.

Yourman, L.F., Jeffers, S.N., & Dean, R.A. (2001). Phenotype instability in Botrytis cinerea in the absence of benzimidazole and dicarboximide fungicides. Phytopathology, 91, 307-315.

Published
2015/02/10
Section
Original Scientific Paper