Herbicides in surface water bodies - behaviour, effects on aquatic organisms and risk assessment

  • Marija Stevanovic Institute of Pesticides and Environmental Protection, Banatska 31b, 10080 Belgrade
  • Slavica Gašić Institute of Pesticides and Environmental Protection, Banatska 31b, 10080 Belgrade
Keywords: herbicides; water; aquatic organisms; toxicity; risk assessment

Abstract


Pesticides play a very important role in reducing losses and maintaining quality in crop
production. Although positive effects of pesticide use are undeniable, adverse effects
are frequent. This has led to a comprehensive reevaluation of the benefits of pesticide
use and potential adverse effects on human health and the environment before placing
them on the market. The fact that pesticides are designed to be toxic and are deliberately
introduced into the environment, makes them a very important and strictly regulated
group of pollutants. The most commonly used group of pesticides are herbicides, and
their detection in surface water bodies has been repeatedly reported. In spite of being
designed to be toxic to target species, adverse effects on other inhabitants of aquatic
environments have also been observed. In order to prevent negative environmental effects,
the registration process for active substances and plant protection products involves
predictive environmental risk assessments (ERA). Reliable assessment of long-term effects
on non-target species, natural populations and ecosystems is a priority and ERA process
is constantly being improved.

References

Arias-Estevez, M., Lopez-Periago, E., Martinez-Carballo, E., Simal-Gandara, J., Mejuto, J.C., & Garcia-Rio, L. (2008). The mobility and degradation of pesticides in soil and the pollution of groundwater resources. Agriculture, Ecosystems and Environment, 123, 247-260. doi: https://doi.org/10.1016/j.agee.2007.07.011

Azimonti, G., Galimberti, F., Marchetto, F., Menaballi, L., Ullucci, S., Pellicioli, F.... van der Voet, H. (2015). Comparison of NOEC values to EC10/EC20 values, including confidence intervals, in aquatic and terrestrial ecotoxicological risk assessment. EFSA Supporting Publications, 12(12), p.906E. doi: https://doi.org/10.2903/sp.efsa.2015.EN-906

Belanger, S. E., Rawlings, J. M., & Carr, G. J. (2013). Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environmental Toxicology and Chemistry, 32(8), 1768-1783. doi: https://doi.org/10.1002/etc.2244

Beyer, J., Petersen, K., Song, Y., Ruus, A., Grung, M., Bakke, T., & Tollefsen, K. E. (2014). Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Marine Environmental Research, 96, 81-91. doi: http://dx.doi.org/10.1016/j.marenvres.2013.10.008

Boivin, A., & Poulsen, V. (2016). Environmental risk assessment of pesticides: state of the art and prospective improvement from science. Environmental Science and Pollution Research, 24(8), 6889-6894. doi: https://doi.org/10.1007/s11356-016-8289-2

Bonfanti, P., Colombo, A., Orsi, F., Nizzetto, I., Andrioletti, M., Bacchetta, R. ... Vismara, C. (2004). Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development. Aquatic Toxicology, 70, 189-200. doi: https://doi.org/10.1016/j.aquatox.2004.09.007

Botelho, R. G., Cury, J. P., Tornisielo, V. L., & dos Santos, J. B. (2012). Herbicides and the aquatic environment. In M.N. Hasaneen (Ed.), Herbicides – Properties, synthesis and control of weeds. INTECH Open Access Publisher.

Boye, K., Lindstrom, B., Bostrom, G., & Kreuger, J. (2019). Long-term data from the Swedish national environmental monitoring program of pesticides in surface waters. Journal of Environmental Quality, 48(4), 1109-1119. doi: https://doi.org/10.2134/jeq2019.02.0056

Brain, R.A., Schneider, S.Z., Anderson, J.C., Knopper, L.D., Wolf, J.C., & Hanson, M.L. (2018). Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: No evidence of impaired fecundity from exposure to atrazine. Chemosphere, 205, 126-136. doi: https://doi.org/10.1016/j.chemosphere.2018.04.068

Braunbeck, T., Kais, B., Lammer, E., Otte, J., Schneider, K., Stengel, D., & Strecker, R. (2015). The fish embryo test (FET): origin, applications, and future. Environmental Science and Pollution Research, 22, 16247-16261. doi: https://doi.org/10.1007/s11356-014-3814-7

Brodman, R., Newman, W.D., Laurie, K., Osterfeld, K., & Lenzo, N. (2010). Interaction of an aquatic herbicide and predatory salamander density on wetland communities. Journal of Herpetology, 44(1), 69-82. doi: http://dx.doi.org/10.1670/08-320.1

Burdett, A.S., Stevens, M.M., & Macmillan, D.L. (2001). Laboratory and field studies on the effect of molinate, clomazone, and thiobencarb on nontarget aquatic invertebrates. Environmnetal Toxicology and Chemistry, 20(10), 2229-2236. doi: https://doi.org/10.1002/etc.5620201015

Carter, A. D. (2000). Herbicide movement in soil: principles, pathways and processes. Weed Research, 40, 113-122. doi: https://doi.org/10.1046/j.1365-3180.2000.00157.x

Cedergreen, N., Streibig, J.C., & Spliid, N.H. (2004). Sensitivity of aquatic plants to the herbicide metsulfuron-methyl. Ecotoxicology and Environmental Safety, 57, 153-161. doi: https://doi.org/10.1016/S0147-6513(02)00145-8

Cerejeira, M.J., Viana, P., Batista, S., Pereira, T., Silva, E., Valerio, M.J. ... Silva-Fernandes, A.M. (2003). Pesticides in Portuguese surface and ground waters. Water Research, 37, 1055-1063. https://doi.org/10.1016/S0043-1354(01)00462-6

Chamsi, O., Pinelli, E., Faucon, B., Perrault, A., Lacroix, L., Sanchez-Perez, J.M. & Charcosset, J.I. (2019). Effects of herbicide mixtures on freshwater microalgae with the potential effects of a safener. International Journal of Limnology, 55, 3. doi: https://doi.org/10.1051/limn/2019002

Colombo, A., Bonfanti, P., Ciccotelli, M., Doldi, M., Del’Orto, N., & Camatini, M. (1996). Induction of cytochrome P4501A isoform in Xenopus laevis is a valid tool for monitoring the exposure to benzo[a]pyrene. Journal of Aquatic Ecosystem Health, 5, 207-211. doi: https://doi.org/10.1007/BF00124108

Cook, L.W., Paradise, C.J., & Lom, B. (2005). The pesticide malathion reduces survival and growth in developing zebrafish. Environmental Toxicology and Chemistry, 24(7), 1745-1750. doi: https://doi.org/10.1897/04-331R.1

Cox, C., & Surgan, M. (2006). Unidentified inert ingredients in pesticides: Implications for human and environmental health. Environmental Health Perspectives, 114(12), 1803-1806. doi: https://doi.org/10.1289/ehp.9374

Dalton, R.L., Nussbaumer, C., Pick, F.R., & Boutin, C. (2013). Comparing the sensitivity of geographically distinct Lemna minor populations to atrazine. Ecotoxicology, 22, 718-730. doi: https://doi.org/10.1007/s10646-013-1064-y

Damalas, C.A., & Eleftherohorinos, I.G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8, 1402-1419. doi: https://doi.org/10.3390/ijerph8051402

De Andrade, L.L., do Espirito Santo Pereira, A., Fernandes Fraceto, L., & Bueno dos Reis Martinez, C. (2019). Can atrazine loaded nanocapsules reduce the toxic effects of this herbicide on the fish Prochilodus lineatus? A multibiomarker approach. Science of the Total Environment, 663, 548-559. doi: https://doi.org/10.1016/j.scitotenv.2019.01.380

De Brito Rodrigues, L., Goncalves Costa, G., Lundgren Tha, E., Rafael da Silva, L., de Oliveira, R., Morais Leme, D. ... Rodrigues de Oliveira, G.A. (2019). Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 94-101. doi: https://doi.org/10.1016/j.mrgentox.2019.05.002

De Liguoro, M., Dalla Bona, M., Gallina, G., Capolongo, F., Gallocchio, F., Binato, G., & Di Leva, V. (2014). A monitoring of chemical contaminants in water used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool. Environmental Science and Pollution Research, 21(5), 3546-3557. doi: https://doi.org/10.1007/s11356-013-2357-7

Della Vechia, J.F., Cruz, C., Silva, A.F., Cerveira JR., W.R., & Garlich, N. (2016). Macrophite bioassay applications for monitoring pesticides in the aquatic environment. Planta Daninha, 34(3), 597-603. doi: https://doi.org/10.1590/S0100-83582016340300021

Di Guardo, A., & Finizio, A. (2018). A new methodology to identify surface water bodies at risk by using monitoring data: The glyphosate case study in Lombardy Region (Italy). Science of the Total Environment, 610-611, 421-429. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.08.049

Domingues, I., Oliveira, R., Musso, C., Cardoso, M., Soares, A.M.V.M., & Loureiro, S. (2011). Prochloraz effects on biomarkers activity in zebrafish early life stages and adults. Environmental Toxicology, 28(3), 155-163. doi: https://doi.org/10.1002/tox.20710

Dougherty, J.A., Swarzenski, P.W., Dinicola, R.S., & Reinhard, M. (2010). Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington. Journal of Environmental Quality, 39, 1173-118. doi: https://doi.org/10.2134/jeq2009.0189

EC (2002). Guidance document on aquatic ecotoxicology in the context of the Directive 91/414/EEC. European Commission, Health and Consumer Protection Directorate-General, SANCO/3268/2001 rev. 4 (final), Brussels. https://yosemite.epa.gov/oa/EAB_Web_Docket.nsf/Attachments%20By%20ParentFilingId/7B39B959EEFC9DEE85257FD20046C85C/$FILE/PBNX%20047.pdf Accessed: 20.11.2019.

EC (2009a). Regulation No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/ EEC and 91/414/EEC. https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32009R1107&qid=1584819017838&from=EN Accessed: 20.11.2019.

EC (2009b). Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0128&from=EN Accessed: 20.11.2019.

EC (2013a). Commission regulation No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. http://eur-lex.europa.eu/legal-content/ EN/TXT/HTML/?uri=%20CELEX:32013R0283&from=EN Accessed: 20.11.2019.

EC (2013b). Commission regulation No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. http://eur-lex.europa.eu/LexUriServ/ LexUriServ.do?uri=OJ:L:2013:093:0085:0152:EN:PDF Accessed: 20.11.2019.

EFSA (2004). Opinion on the scientific panel on plant health, plant protection products and their residues on a request from EFSA on the appropriateness of using the current FOCUS surface water scenarios for estimating exposure for risk assessment in aquatic ecotoxicology in the context of Counsil Directive 91/414/EEC. EFSA Journal, 145, 1-31. https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2005.145 Accessed: 20.11.2019.

EFSA (2013). Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-offield surface waters. EFSA Journal, 11(7), 3290. doi: https://doi.org/10.2903/j.efsa.2013.3290

EFSA (2015). Outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA Supporting publication, EN-924, 1-62. doi: https://doi.org/10.2903/sp.efsa.2015.EN-924

EFSA (2018). Scientific opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. EFSA Journal, 16(2), e05125. doi: https://doi.org/10.2903/j.efsa.2018.5125

FAO (2000). Appendix 2: Parameters of pesticides that influence processes in the soil. In FAO Information Division Editorial Group (Ed.), Pesticide disposal series 8. Assessing soil contamination: A reference manual. Rome: Food and Agriculture Organization of the United

Nations (FAO). http://www.fao.org/3/X2570E/X2570E00.htm Accessed: 18.11.2019.

FAOSTAT (2017). Food and Agriculture Organisation of the United Nations (FAO). http://www.fao.org/faostat/en/#data/RP Accessed: 13.11.2019.

FOCUS (2015). Generic guidance for FOCUS surface water scenarios. Report of the FOCUS Surface Water Scenarios Group, EC Document Reference SANCO/4802/2001-rev. 2. https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/sw/docs/Generic%20FOCUS_SWS_vc1.4.pdf Accessed: 20.11.2019.

Fogg, P., Boxall, A., Walker, A., & Jukes, A. A. (2003). Pesticide degradation in a “biobed”composting substrate. Pest Management Science, 59, 527-537. doi: https://doi.org/10.1002/ps.685

Foudoulakis, M. (2006). Ecotoxicological risk assessment for plant protection products in Europe. In: Arapis, G., Goncharova, N. & Baveye, P. (Eds.), Ecotoxicology, Ecological Risk Assessment and Multiple Stressors (pp.137-154). Dordrecht, The Netherlands: Springer.

Gaaied, S., Oliveira, M., Domingues, I., & Banni, M. (2019). 2,4-Dichlorophenoxyacetic acid herbicide effects in zebrafish larvae: development, neurotransmission and behavior as sensitive endpoints. Environmental Science and Pollution Research. Published online: 18 February 2019. doi: https://doi.org/10.1007/s11356-019-04488-5

Gašić, S., Budimir, M., Brkić, D., & Nešković, N. (2002). Residues of atrazine in agricultural areas of Serbia. Journal of the Serbian Chemical Society, 67(12), 887-882. doi: https://doi.org/10.2298/JSC0212887G

Gašić, S., & Orešković, Z. (2006). Novi tipovi formulacija u zaštiti bilja: emulzije ulja u vodi (EW) [New formulation types in plant protection: Emulsion, oil in water (EW)]. Pesticidi i fitomedicina, 21, 263-271. http://www.pesting.org.rs/media/casopis/2006/no.4/21-4-263-271.pdf

Gašić, S., Radivojević, Lj., Gajić-Umiljendić, J., Stevanović, M., & Šantrić, Lj. (2012). Development of the adjuvants based on plant oils and their application. In: Marisavljević, D. (Ed.), Proceedings of International Symposium on Current Trends in Plant-Protection, (pp. 415-420). Belgrade, Serbia: Institute for Plant Protection and Environment.

Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5, 497-526. doi: https://doi.org/10.1002/elsc.200520098

Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2012). U.S. EPA Pesticides industry sales and usage: 2006 - 2007 Market estimates. Washington, DC: U.D. Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-10/documents/market_estimates2007.pdf Accessed 18.11.2019.

Hanson, M.L., Solomon, K.R., Van Der Kraak, G.J., & Brian, R.A. (2019). Effects of atrazine on fish, amphibians and reptiles: update of the analysis based on quanitative weight of evidence. Critical Reviews in Toxicology, 49,(8), 670-709. doi: https://doi.org/10.1080/10408444.2019.1701985

Hasenbein, S., Lawler, S.P., & Connon, R.E. (2017). An assessment of direct and indirect effects of two herbicides on aquatic communities. Environmental Toxicology and Chemostry, 36(8), 2234-2244. doi: http://dx.doi.org/10.1002/etc.3740

Hazra, D.K., Karmakar, R., Poi, R., Bhattacharya, S., & Mondal, S. (2017). Recent advances in pesticide formulation for eco-friendly and sustainable vegetable pest management: A review. Archives of Agriculture and Environmental Science, 2(3), 232-237. https://www.aesacademy.org/journal/volume2/issue3/AAES-02-03-017.pdf Accessed 20.11.2019.

Hazra, D.K., & Purkait, A. (2019). Role of pesticide formulations for sustainable crop protection and environment management: A review. Journal of Pharmacognosy and Phytochemistry, 8,(2), 686-693. http://www.phytojournal.com/archives/2019/vol8issue2/PartL/8-1-568-106.pdf Accessed 20.11.2019.

Hayes, T.B., Anderson, L.L., Beasley, V.R., de Solla, S.R., Iguchi, T., Ingraham, H.… Willingham, E. (2011). Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes. Journal of Steroid Biochemistry & Molecular Biology, 127, 64-73. doi: https://doi.org/10.1016/j.jsbmb.2011.03.015

Hayes, T.B., Case, P., Chui, S., Chung, D., Haeffele, C., Haston, K.… Tsui, M. (2006). Pesticides mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact? Environmental Health Perspectives, 114(Suppl 1), 40-50. doi: https://doi.org/10.1289/ehp.8051

Hoskins, T.D., & Boone, M.D. (2018). Atrazine feminizes sex ratio in Blanchard’s cricket frogs (Acris blanchardi) at concentration as low as 0.1 mg/L. Environmental Toxicology and Chemistry, 37(2), 427-435. doi: https://doi.org/10.1002/etc.3962

Howe, C.M., Berrill, M., Pauli, B.D., Helbing, C.C., Werry, K., & Veldhoen, N. (2004). Toxicity of glyphosatebased pesticides to four North American frog species. Environmental Toxicology and Chemistry, 23(8), 1928-1938. doi: https://doi.org/10.1897/03-71

Hrustić, J., Mihajlović, M., Grahovac, M., Stevanović, M., Delibašić, G., Gašić, S., & Tanović, B. (2019). Antifungal effect of Bacillus subtilis B6 strain on Monilinia fructicola. In: Jijakli, H. (Ed.), Book of Abstracts V International Symposium on Postharvest Pathology (P045). University of Liege, Belgium.

Iorio, M. (2008). Sorption studies of ionic pesticides and hydrophobic organic compounds on polymerin for potential water remediation. Naples, Italy: University of Naples Federico II, Agriculture faculty, Department of Soil, Plant, Environmental and Animal Production Sciences.

Ippolito, A., & Fait, G. (2019). Pesticides in surface waters: from edge-of-field to global modelling. Current Opinion in Environmental Sustainability, 36, 78-84. doi: https://doi.org/10.1016/j.cosust.2018.10.023

Janssens, L., & Stoks, R. (2017). Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquatic Toxicology, 193, 210-216. doi: http://dx.doi.org/10.1016/j.aquatox.2017.10.028

Kang, H.S., Park, C.J., & Gye, M.C. (2009). Effects of molinate on survival and development of Bombina orientalis (Boulenger) embryos. Bulletin of Environmental Contamination and Toxicology, 82, 305-309. doi: https://doi.org/10.1007/s00128-008-9602-7

Kim, K-H., Kabir, E., & Jahan, S.A. (2017). Exposure to pesticides and the assossiated human health effects. Science of the Total Environment, 575, 525-535. doi: https://doi.org/10.1016/j.scitotenv.2016.09.009

Knabel., A., Meyer, K., Rapp, J., & Schulz, R. (2014). Fungicide field concentrations exceed FOCUS surface water predictions: Urgent need of model improvement. Environmental Science and Technology, 48(1), 455-463. doi: https://dx.doi.org/10.1021/es4048329

Knabel., A., Scheringer, M., Stehle, S., & Schulz, R. (2016). Aquatic exposure predictions of insecticide field concentrations using a multimedia mass-balance model. Environmental Science and Technology, 50(7), 3721-3728. doi: https://doi.org/10.1021/acs.est.5b05721

Knabel., A., Stehle, S., Schafer, R.B., & Schulz, R. (2012). Regulatory FOCUS surface water models fail to predict insecticide concentrations in the field. Environmental Science and Technology, 46(15), 8397-8404. doi: https://dx.doi.org/10.1021/es301649w

Knauer, K. (2016). Pesticides in surface waters: a comparison with regulatory acceptable concentrations (RACs) determined in the authorization process and consideration for regulation. Environmental Sciences Europe, 28, 13. doi: https://doi.org/10.1186/s12302-016-0083-8

Knauer, K., Mohr, S., & Feiler, U. (2008). Comparing growth development of Myriophyllum sp. in laboratory and field experiments for ecotoxicological testing. Environmental Science and Pollution Research, 15(4), 322-331. doi: https://doi.org/10.1002/ps.1226

Knežević, V., Tunić, T., Gajić, P., Marjan, P., Savić, D., Tenji, D., & Teodorović, I. (2016). Getting more ecologically relevant information from laboratory tests: Recovery of Lemna minor after exposure to herbicides and their mixtures. Archives of Environmental Contamination and Toxicology, 71, 572-588. doi: https://doi.org/10.1007/s00244-016-0321-5

Knowles, A (2005). New developments in crop protection product formulation. Agrow Reports, DS 243, 153-156. https://www.yumpu.com/en/document/read/5990529/new-developments-in-crop-protection-productformulation-agrow

Kock-Schulmeyer, M., Ginebreda, A., Postigo, C., Garrido, T., Fraile, J., Lopez de Alda, M. & Barcelo, D. (2014). Fouryear advanced monitoring program of polar pesticides in ground water of Catalonia (NE-Spain). Science of The Total Environment, 470-471, 1087-1098. doi: http://dx.doi.org/10.1016/j.scitotenv.2013.10.079

Kortenkamp, A. (2014). Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Current Opinion in Pharmacology, 19, 105-111. doi: https://doi.org/10.1016/j.coph.2014.08.006

Kortenkamp, A., Backhaus, T., & Faust, M. (2009). State of the art report on mixture toxicity: Final report. Brussels, Belgium: European Commission, Directorate General for the Environment, 7-12. https://ec.europa.eu/environment/chemicals/effects/pdf/report_mixture_toxicity.pdf Accessed: 15.11.2019.

Lenkowski, J.R., Sanchez-Bravo, G., & McLaughlin, K.A. (2010). Low concentrations of atrazine, glyphosate, 2,4-dichlorophenoxyacetic acid, and triadimefon exposures have diverse effects on Xenopus laevis organ morphogenesis. Journal of Environmental Sciences, 22(9), 1305-1308. doi: https://doi.org/10.1016/S1001-0742(09)60254-0

MacLoughlin, C., Canosa, I.S., Silveyra, G.R., Lopez Greco, L.S., & Rodriguez, E.M. (2016). Effects of atrazine on growth and sex differentiation, in juveniles of the freshwater crayfish Cherax quadricarinatus. Ecotoxicology and Environmental Safety, 131, 96-103. doi: http://dx.doi.org/10.1016/j.ecoenv.2016.05.009

Mahmood, I., Imad, S.R., Shazadi, K., Gul, A., & Hakeem, K.R. (2016). Effects of pesticides on environment. In: Hakeem K., Akhtar M., Abdullah S. (eds) Plant, Soil and Microbes (pp 253-269). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-319-27455-3_13

McCallum, M.L. (2007). Amphibian decline or extinction? Current declines dwarf background extinction rate. Journal of Herpetology, 41(3), 483-491. https://www.jstor.org/stable/4498614

McCoy, K.A., Bortnick, L.J., Campbell, C.M., Hamlin, H.J., Guillette Jr., L.J., & St. Mary, C.M. (2008). Agriculture alters gonadal form and function in the toad Bufo marinus. Environmental Health Perspectives, 116(11), 1526-1532. doi: https://doi.org/10.1289/ehp.11536

Mela, M., Guiloski, I.C., Doria, H.B., Randi, M.A.F., de Oliveira Riberio, C.A., Pereira, L. ... Silva de Assis, H.C. (2013). Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen). Ecotoxicology and Environmental Safety, 93, 13-21. doi: http://dx.doi.org/10.1016/j.ecoenv.2013.03.026

Mesnage, R., Benbrook, C., & Antoniou, M.N. (2019). Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food and Chemical Toxicology, 128, 137-145. doi: https://doi.org/10.1016/j.fct.2019.03.053

Mesnage, R., Defarge, N., de Vendomois, J.S., & Seralini, G. (2014). Major pesticides are more toxic to human cells than their declared active principles. BioMed Research International, Article ID 179691, 8 pages. doi: http://dx.doi.org/10.1155/2014/179691

Miko, Z., Ujszegi, J., & Hettyey, A. (2017). Age-dependent changes in sensitivity to a pesticide in tadpoles of the common toad (Bufo bufo). Aquatic Toxicology, 187, 48-54. doi: https://doi.org/10.1016/j.aquatox.2017.03.016

Nagai, T. (2019). Sensitivity differences among seven algal species to 12 herbicides with various modes of action. Journal of Pesticide Science, 44(4), 225-232. doi: https://doi.org/10.1584/jpestics.D19-039

Nagai, T., Taya, K., & Yoda, I. (2016). Comparative toxicity of 20 herbicides to 5 periphytic algae and the relationship with mode of action. Environmental Toxicology and Chemistry, 35(2), 368-375. doi: https://doi.org/10.1002/etc.3150

Newman, M.C., & Unger, M.A. (2003). Fundamentals of ecotoxicology, 2nd ed. Boca Raton, FL: Lewis Publishers.

Oka, T., Tooi, O., Mitsui, N., Miyahara, M., Ohnishi, Y., Takase, M. ... Iguchi, T. (2008). Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquatic Toxicology, 87, 215-226. doi: https://doi.org/10.1016/j.aquatox.2008.02.009

Ortiz-Hernandez, M.L., Sanchez-Salinas, E., Dantan-Gonzales, E., & Castrejon-Godinez, M. L. (2013). Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In R. Chamy (ed.), Biodegradation - Life of science (pp 251-287). Rijeka, Croatia, Intechpublishing. doi: https://dx.doi.org/10.5772/52777

Osano, O., Admiraal, W., & Otieno, D. (2002). Developmental disorders in embryos of the frog Xenopus laevis induced by chloracetanilide herbicides and their degradation products. Environmental Toxicology and Chemistry, 21(2), 375-379. doi: https://doi.org/10.1002/etc.5620210221

Pamanji, R., Bethu, M.S., Yashwanth, B., Leelevanthi, S., & Venkateswara Rao, J. (2015). Developmental toxic effects of monocrotophos, an organophosphorus pesticide, on zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research, 22(10), 7744-7753. doi: https://doi.org/10.1007/s11356-015-4120-8

Papadakis, E.N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., Makris, K.C., & Papadopoulou-Mourkidou, E. (2015). A pesticide monitoring survey in rivers and lakes in northern Greece and its human and ecotoxicological risk assessment. Ecotoxicology and Environmental Safety, 116, 1-9. doi: http://dx.doi.org/10.1016/j.ecoenv.2015.02.033

Park, J., Brown, M.T., Depuydt, S., Kim, J.K., Won, D.S., & Han, T. (2017). Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides. Environmental Pollution, 220, 818-827. doi: 10.1016/j.envpol.2016.10.064

Pereira, A.S., Daam, M.A., & Cerejeira, M.J. (2017). Evaluation of FOCUS surface water pesticide concentration predicitons and risk assessment of field-measured pesticide mixtures – a crop-based approach under Mediterranean conditions. Environmental Science and Pollution Research, 24, 17394-17406. doi: https://doi.org/10.1007/s11356-017-9393-7

Pereira, J.L., Antunes, S.C., Castro, B.B., Marques, C.R., Goncalves, A.M.M., Goncalves, F., & Pereira, R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 18, 455-463. doi:

https://doi.org/10.1007/s10646-009-0300-y

Pravilnik o sadržini i načinu postupanja sa dokumentacijom za procenu aktivne supstance, odnosno osnovne supstance i metodama za ispitivanje aktivne supstance, odnosno osnovne supstance (2012a). Službeni glasnik RS, 69/12. http://www.pravno-informacionisistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2012/69/2/reg Accessed: 23.11.2019.

Pravilnik o sadržini i načinu postupanja sa dokumentacijom za procenu sredstava za zaštitu bilja i metodama za ispitivanje sredstava za zaštitu bilja (2012b). Službeni glasnik RS, 69/12. http://www.pravno-informacionisistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2016/12/8/reg Accessed: 25.11.2019.

Quignot, N., Grech, A., & Amzal, B. (2015). Data collection on combined toxicity of multiple chemicals for animal health and ecological risk assessment. EFSA Supporting Publications 12(7), EN-861. doi: https://doi.org/10.2903/sp.efsa.2015.EN-861

Radivojević, LJ., Gašić, S., Gajić Umiljendić, J., Stevanović, M., & Šantrić, Lj. (2016). Enhancement of bentazone efficacy with newly developed ecofriendly adjuvants. Romanian Agricultural Research, 33, 323-330. https://www.incda-fundulea.ro/rar/nr33/rar33.37.pdf

Raftery, T.D., Isales, G.M., Yozzo, K.L., & Volz, D.C. (2014). High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos. Environmental Science and Technology, 48, 804-810. doi: https://doi.org/10.1021/es404322p

Reichenberger, S., Bach, M., Skitschak, A., & Frede, H.G. (2007). Mitigation startegies to reduce pesticide inputs into ground- and surface water and their effectiveness: A review. Science of the Total Environment, 384, 1-35. doi: https://doi.org/10.1016/j.scitotenv.2007.04.046

Reilly, T.J., Smalling, K.L., Orlando, J.L., & Kuivila, K.M. (2012). Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere, 89, 228-234. doi: http://dx.doi.org/10.1016/j.chemosphere.2012.04.023

Rice, P.J., Rice, P.J., Arthur, L.E., & Barefoot, A.C. (2007). Advances in pesticide environmental fate and exposure assessments. Journal of Agriculture and Food Chemistry, 55(14), 5367-5376. doi: https://doi.org/10.1021/jf063764s

Rosenkrantz, R.T., Baun, A., & Kusk, K.O. (2013). Growth inhibition and recovery of Lemna gibba after pulse exposure to sulfonylurea herbicides. Ecotoxicology and Environmental Safety, 89, 89-94. doi: https://doi.org/10.1016/j.ecoenv.2012.11.017

Sauco, S., Eguren, G., Heinzen, H., & Defeo, O. (2010). Effects of herbicides and freshwater discharge on water chemistry, toxicity and benthos in a Uruguayan sandy beach. Marine Environmental Research, 70, 300-307. doi: https://doi.org/10.1016/j.marenvres.2010.06.002

Scholz, S., Knobel, M., Ortmann, J., Busser, F., Kramer, N., Hermens, J. ... Schirmer, K. (2009). The fish embryo test as an alternative to acute fish toxicity testing: Optimisation for difficult compounds and role of metabolic activation. Toxicology Letters, 189(Suppl.), S205. doi: https://doi.org/10.1016/j.toxlet.2009.06.620

Seaman, D. (1990). Trends in the formulation of pesticides - an overview. Pest Management Science, 29(4), 437-449. doi: https://doi.org/10.1002/ps.2780290408

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu G.P.S., Handa, N. ... Kumar Thukral, A. (2019). Worldwide pesticide usage and its impact on ecosystem. SN Applied Sciences 1, ID 1446. doi: https://doi.org/10.1007/s42452-019-1485-1

Solomon, K., Dalhoff, K., Volz, D., & Van der Kraak, G. (2014). Effects of herbicides on fish. In K.B. Tierney, A.P. Farrell & C.J. Brauner (Eds.), Organic chemical toxicology of fishes (pp 369-409). Elsevier, USA.

Stehr, C.M., Linbo, T.L., Incardona, J.P., & Scholz, N.L. (2006). The developmental neurotoxicity of fipronil: Notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicological Sciences, 92(1), 270-278. doi: https://doi.org/10.1093/toxsci/kfj185

Stevanović, M., Brkić, D., Marković, M., Jović, M., Tunić, T., Knežević, V., & Gašić, S. (2013). Pesticidi u vodi i njihov uticaj na akvatične organizme: 1. Delovanje herbicida klomazon na rast vrste Lemna minor (L.). In: Delibašić, G. (Ed.), Zbornik rezimea radova XII savetovanja o zaštiti bilja (pp. 125). Belgrade, Serbia: Plant Protection Society of Serbia.

Stevanović, M., Brkić, D., Tunić, T., Knežević, V., Tenji, D., Pavkov, S. … Gašić, S. (2016). Uticaj aktivne supstance klomazon i komercijalnih preparata na akvatične makrofite. In: Tanović, B. (Ed.), Zbornik rezime radova XV simpozijuma o zaštiti bilja (pp. 45). Belgrade, Serbia: Plant Protection Society of Serbia.

Stevanovic, M., Gasic, S., Pipal, M., Blahova, L., Brkic, D., Neskovic, N., & Hilscherova, K. (2017). Toxicity of clomazone and its formulations to zebrafish embryos (Danio rerio). Aquatic Toxicology, 188, 54-63. doi: https://doi.org/10.1016/j.aquatox.2017.04.007

Stevanović, M., Radivojević, Lj., Šantrić, Lj., & Gašić, S. (2019). Pethoxamid effects in non-target aquatic macrophytes. In: Tanović, B., Dolzhenko, V. & Nikot, F. (Eds.), Book of Abstracts, VIII Congress on Plant Protection: Integrated Plant Protection for Sustainable Crop Production and Forestery, Zlatibor (pp. 144). Belgrade, Serbia: Plant Protection Society of Serbia.

Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L., & Waller, R.W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306(5702), 1783-1786. doi: https://doi.org/10.1126/science.1103538

Suter II, G.W. (2006). Ecological risk assessment. Boca Raton, FL: CRC Press.

Tanović, B., Gašić, S., Hrustić, J., Mihajlović, M., Grahovac, M., Delibašić, G., & Stevanović, M. (2013). Development of a thyme essential oil formulation and its effect on Monilinia fructigena. Pesticides and Phytomedicine, 28(4), 273-280. doi: https://doi.org/10.2298/PIF1304273T

Tanović, B., Kolomiets, E., Kuptsov, V., Hrustić, J., Gašić, S., Grahovac, M. … Stevanović, M. (2012). Soj N146 Bacillus subtilis kao potencijalni agens za suzbijanje Monilinia fructicola. In: Delibašić, G. (Ed.), Zbornik rezimea radova XIV simpozijuma o zaštiti bilja i IX kongresa o korovima (pp 110). Belgrade, Serbia: Plant Protection Society of Serbia.

Tasiwal, V., Benagi, V.I., Hegde, Y.R., Kamanna, B.C., & Naik, K.R. (2009). In vitro evaluation of botanicals, bioagents and fungicides against anthracnose of papaya caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. Karnataka Journal of Agricultural Sciences, 22(4), 803-806. https://www.cabdirect.org/cabdirect/abstract/20103137033

Teodorović, I., Knežević, V., Tunić, T., Čučak, M., Nikolić Lečić, J., Leovac, A., & Ivančev Tumbas, I. (2012). Myriophyllum aquaticum versus Lemna minor: Sensitivity and recovery potential after exposure to atrazine. Environmental Toxicology and Chemistry, 31(2), 417-426. doi: https://doi.org/10.1002/etc.748

Tunić, T., Knežević, V., Kerkez, Đ., Tubić, A., Šunjka, D., Lazić, S. … & Teodorović, I. (2015). Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a watersediment system as an additional test in risk assessment of herbicides. Environmental Toxicology and Chemistry, 34(9), 2104-2115. doi: https://doi.org/10.1002/etc.3034

Turgut, C., & Fomin, A. (2002). Sensitivity of the rooted macrophyte Myriophyllum aquaticum (Vell.) Verdcourt to seventeen pesticides determined on the basis of EC50. Bulletin of Environmental Contamination and Toxicology, 69, 601-608. doi: https://doi.org/10.1007/s00128-002-0103-9

U.S. EPA (1992). Framework for ecological risk assessment, EPA/630/R-92/001. Washington, DC: Risk Assessment Forum, U.S. Environmental Protection Agency. https://www.epa.gov/sites/production/files/2014-11/documents/framework_eco_assessment.pdf Accessed 19.11.2019.

Van Leeuwen, C.J. (2007). Part I. Introduction. In: C.J. Van Leeuwen & T.G. Vermeire (Eds.), Risk assessment of chemicals - An introduction, 2nd edition (pp 1-36). Dordrecht: The Netherlands: Springer.

Vargas, J.M. (1975). Pesticide degradation (International shade tree conference, Detroit, Michigan). Journal of Arboriculture, 232-233. http://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=1362&Type=2

Walker, C.H. (2008). Organic pollutants: An ecotoxicological perspective. Boca Raton, FL: CRC Press.

Wang, C.J., & Liu, Z.Q. (2007). Foliar uptake of pesticides – Present status and future challenge. Pesticide Biochemistry and Physiology, 87(1), 1-8. doi: https://doi.org/10.1016/j.pestbp.2006.04.004

Wang, L-L., Liu, T., Wang, C., Zhao, F-Q., Zhang, Z-W., Yao, H-D. ... Xu, S-W. (2013). Effects of atrazine and chlorpyrifos on the porduction of nitric oxide and expression of inducible nitric oxide synthase in the brain of common carp (Cyprinus caprio). Ecotoxicology and Environmental Safety, 93, 7-12. doi: http://dx.doi.org/10.1016/j.ecoenv.2013.03.007

Wauchope, R.D., Yeh, S., Linders, J.B.H.J., Kloskowski, R., Tanaka, K., Rubin, B. … Unsworth, J.M. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science, 58, 419-445. doi: https://doi.org/10.1002/ps.489

Weichert, F.G., Floeter, C., Meza Artman, A.S., & Kammann, U. (2017). Assessing the ecotoxicity of potentially neurotoxic substances – Evaluation of a behavioural parameter in the embryogenesis of Danio rerio. Chemosphere, 186, 43-50. doi: https://doi.org/10.1016/j.chemosphere.2017.07.136

Zakon o sredstvima za zaštitu bilja (2009). Službeni glasnik RS, 41/09. http://www.pravno-informacionisistem. rs/SlGlasnikPortal/eli/rep/sgrs/skupstina/zakon/2009/41/8/reg

Published
2020/05/02
Section
Review Paper