Photocatalytic degradation of carbamate insecticides: effect of different parameters

  • Anđelka Tomašević Institute of Pesticides and Environmental Protection, Banatska 31b, 11080, Belgrade
  • Dušan Mijin Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, PP 3503, 11120 Belgrade
  • Aleksandar Marinković Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, PP 3503, 11120 Belgrade
  • Ilija Cvijetić Innovation Center, Faculty of Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade
  • Slavica Gašić Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade-Zemun
Keywords: carbofuran model compound; photocatalysis; zinc oxide; titan dioxide; kinetics

Abstract


Photocatalytic degradation of a model compound of the carbamate insecticide
carbofuran in water was studied using polychromatic light and ZnO and TiO2 catalysts.
The influence of operational parameters, such as reaction time and initial carbofuran
concentration, on photocatalytic degradation was studied. A pseudo-first-order kinetic
model was established and an almost complete removal of 88.4 mg L–1 of carbofuran
occurred within 2 h under optimized conditions. The reactions were examined by UV
spectroscopy and high performance liquid chromatography (HPLC). In addition,
the photocatalytic efficiencies of ZnO and TiO2 were compared under the same
reaction conditions.

Author Biography

Anđelka Tomašević, Institute of Pesticides and Environmental Protection, Banatska 31b, 11080, Belgrade

Laboratorija za hemiju

References

Antić, Z., Prashanthi, K., Jovanović, D., Ahadi, K., Dramićanin, M.D., & Thundat, T. (2017). Transparent and highly luminescent dysprosium-doped GdVO4 thin films fabricated by pulsed laser deposition. Thin Solid Films, 638, 332-337.

Behnajady, M.A., Modirshahla, N., & Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials B, 133(1-3), 226-232. doi: 10.1016/j.jhazmat.2005.10.022

Benicha, M., Mrabet, R., & Azmani, A. (2013). Dissipation processes of 14C-carbofuran in soil from Northwest Morocco as influenced by soil water content, temperature and microbial activity. Journal of Environmental Chememistry and Ecotoxicology, 5(5) 119-128. doi:10.5897/JECE2013.0270

Berberidou, C., Kitsiou, V., Karahanidou, S., Lambropoulou, D.A., Kouras, A., Kosma, C.I... Poulios, I. (2016). Photocatalytic degradation of the herbicide clopyralid: Kinetics, degradation pathways and ecotoxicity evaluation. Journal of Chemical Technology and Biotechnology, 91(9), 2510–2518. doi: https://doi.org/10.1002/jctb.4848

Chowdhury, A.Z., Banik. S., Uddin, B., Moniruzzaman, M., Karim, N., & Gan, S.G. (2012). Ogranophosphorus and carbamate pesticide residues detected in water samples collected from paddy and vegetable fields of the Savar and Dhamrai Upazilas in Bangladesh. International Journal of Environmental Research and Public Health, 9(9), 3318-3329.

Daneshvar, N., Aber, S., Seyed Dorraji, M.S., Khataee, A.R., & Rasoulifard, M.H. (2008). Preparation and investigation of photocatalytic properties of ZnO nanocrystals: Effect of operational parameters and kinetic study. International Journal of Chemical and Biomolecular Engineering, 1, 24-29.

Daneshvar, N., Salari, D., & Khataee, A.R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology, A: Chemistry, 157, 111-116. doi: https://doi.org/10.1016/S1010-6030(03)00015-7

Daneshvar, N., Salari, D., & Khataee, A.R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology, A: Chemistry, 162(2-3), 317-322. doi: https://doi.org/10.1016/S1010-6030(03)00378-2

Davis, K., Yarbrough, R., Froeschle, M., White, J., & Rathnayake, H. (2019). Band gap engineered zinc oxide nanostructures: Via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RSC Advances, 9, 14638-14648. doi: https://doi.org/10.1039/C9RA02091H

Dolić, S.D., Jovanović, D.J., Smits, K., Babić, B., Marinović-Cincović, M., Porobić, S., & Dramićanin, M.D. (2018). A comparative study of photocatalytically active nanocrystalline tetragonal zyrcon-type and monoclinic scheelite-type bismuth vanadate. Ceramics International, 44(15), 17953-17961. doi: https://doi.org/10.1016/j.ceramint.2018.06.272

Environmental Protection Agency (EPA) (2006). Interim registration eligibility decision carbofuran - Prevention, Pesticides and Toxic Substances (7508P), Report 738-R-06-031. Washington, D.C.: U.S. Environmental Protection Agency, USA.

Evgenidou, E., Fytianos, K., & Poulios, I. (2005). Semiconductor-sensitized photodegradation of

dichlorvos in water using TiO2 and ZnO as catalysts. Applied Catalysis B: Environmental, 59, 81-89. doi: 10.1016/j.apcatb.2005.01.005

Hanaor, D.A.H., & Sorrell, C.C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46, 855-874. doi: https://doi.org/10.1007/s10853-010-5113-0

Huang, J., Ding, H., Dodson, W.S., & Li, Y. (1995). Application of TiO2 sol for UV radiation measurements. Analytica Chimica Acta, 311, 115-122.

Hurum, D.C., Gray, K.A., Rajh, T., & Thurnauer, M.C. (2005). Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. Journal of Physical Chemistry, Part B, 109(2), 977-980. doi: 10.1021/jp045395d

Jing, L., Xu, Z., Sun, X., Shang, J., & Cai, W. (2001). The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science, 180(3-4), 308-314. doi: 10.1016/S0169-4332(01)00365-8

Konstantinou, I.K., & Albanis, T.A. (2003). Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Applied Catalysis B: Environmental, 42, 319-335. doi:10.1016/S0926-3373(02)00266-7

Li, D., & Haneda, H. (2003). Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51(2), 129-137. doi: 10.1016/s0045-6535(02)00787-7

Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Scientific Reports, 4, 4043 (1-8).

MacBean, C. (2012). The pesticide mannual (16th ed.). Alton, UK: BCPC.

Mahalakshmi, M., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2007). Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials, 143(1-2), 240-245. https://doi.org/10.1016/j.jhazmat.2006.09.008

Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalisys Today, 147, 1-59.

Martijn, A., & Dobrat, W. (Eds.). (1988). CIPAC Handbook D: Analysis of technical and formulated pesticides. Cambridge, UK: CIPAC.

Nargiello, M., & Herz, T. (1993). Physical-chemical characteristics of P-25 making it extremely suited as the catalyst in photodegradation of organic compounds. In: D. Ollis & H. Al-Akabi (Eds.), Proceedings of the first International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air (pp. 801-807). Amsterdam, The Netherlands: Elsevier.

Noor, J.M., Kareem, D.K., & Saadiyah, A.D. (2014). Spectrophotometric determination of carbofuran in neutral and alkaline medium of environmental water samples. Medical Sciences, 12, 92-95.

Panigrahi, S., Sarkar, S., & Basak, D. (2012). Metal-free doping process to enhance the conductivity of zinc oxide nanorods retaining the transparency. ACS Applied Materials & Interfaces, 4, 2709-2716. https://doi.org/10.1021/am300348g

Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo, B., Palanichamy, M., & Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77, 65-82. doi: https://doi.org/10.1016/S0927-0248(02)00255-6

Tomašević, A., Bošković, G., Mijin, D., Đilas, S., & Kiss, E. (2007). The extremely high stability of carbofuran pesticide in acidic media. Acta Periodica Technologica, 38, 97-103. doi:10.2298/APT0738097T

Tomašević, A., Kiss, E., Petrović, S., & Mijin, D. (2010). Study on the photocatalytic degradation of insecticide methomyl in water. Desalination, 262(1-3), 228-234. doi: https://doi.org/10.1016/j.desal.2010.06.019

Tomašević, A., Marinković, A., Mijin, D., Radišić, M., Porobić, S., Prlainović, N., & Gašić, S. (2020). A study of photocatalytic degradation of methomyl and its commercial product Lannate-90. Chemical Industry and Chemical Engineering Quarterly, in press, on-line first: https://doi.org/10.2298/CICEQ190424002T

Tomašević, A.V., & Gašić, S.M. (2012a). Photoremediation of carbamate residues in water. In: S. Soloneski & M. Larramendy (Eds.), Insecticides: Basic and other applications (pp. 39-62). Rijeka, Croatia: Intech.

Tomašević, A.V., & Gašić, S.M. (2012b). Impact of methomyl and carbofuran insecticides on environment and their remediation by photochemical processes. In: J.A. Daniels (Ed.), Advances in Environmental Research, Vol. 24 (pp. 33-67). New York, USA: Nova Science Publishers.

World Health Organization (WHO) (1986). Carbamate pesticides: a general introduction. Environmental health criteria (EHC) No.64. Geneva, Switzerland: WHO.

Published
2020/05/02
Section
Original Scientific Paper