Acoustic features of voice in adults suffering from depressio
Abstract
This research aimed to examine whether the acoustic features of voice were different and discriminant in people suffering from depression (experimental group – EG) compared to the typically developing population (control group 1 – CG1) and people with the diagnosed psychogenic voice disorder (control group 2 – CG2). The sample included 51 participants (18 in EG, 24 in CG1, and 9 in CG2). Nine acoustic parameters were analyzed on the basis of the sustained phonation of the vowel /a/. The MDVP software program (“Kay Elemetrics” Corp., model 4300) was used in the acoustic analysis. The results showed that the mean values of all acoustic parameters differed in people suffering from depression compared to both control groups as follows: Jitter, Shimmer, NHR, vAm, APQ, and VTI parameters were higher, SPI was lower compared to both control groups, and F0 was lower compared to CG1. Only the PPQ parameter was not significant. Shimmer, vAm, APQ, and VTI parameters had the highest discriminant value for depression. The acoustic features of voice, analyzed in this study with regard to the sustained phonation of a vowel, were different and discriminant in the EG compared to CG1 and CG2. In voice analysis, the parameters Shimmer, vAm, APQ, and VTI could potentially be the markers indicative of depression.
References
Afshan, A., Guo, J., Park, S.J., Ravi, V., Flint, J., & Alwan, A. (2018, september). Effectiveness of voice quality features in detecting depression. In Interspeech 2018. ISCA, Hyderabad, India (pp. 1676–1680.) https://doi.org/10.21437/Interspeech.2018-1399.
Alghowinem, S., Goecke, R., Wagner, M., Epps, J., Breakspear, M., & Parker, G. (2013). Detecting depression: A comparison between spontaneous and read speech. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp.7547–7551).
https://doi.org/10.1109/ICASSP.2013.6639130
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington DC: American Psychiatric Association.
https://doi.org/10.1176/appi.books.9780890425596.
Baek, Y.-S., Kim, S.-J., Kim, E., & Choi, Y. (2012). Vocal acoustic characteristics of speakers with depression. Korean Society of Speech Sciences, 4(1), 91–98.
https://doi.org/10.13064/KSSS.2012.4.1.091
Bueno-Notivol, J., Gracia-García, P., Olaya, B., Lasheras, I., López-Antón, R., & Santabárbara, J. (2021). Prevalence of depression during the COVID-19 outbreak: A meta-analysis of community-based studies. International Journal of Clinical and Health Psychology, 21(1), 100196.
https://doi.org/10.1016/j.ijchp.2020.07.007
Ćuk-Jovanović, L. (2002). Akustička analiza govornog signala pacijenata sa depresivnim poremećajem - karakteristike trajanja (The acoustic analysis of the speech signal of the patients with a depressive disorder: Characteristics of duration). Engrami, 24(2), 15–23.
Ćuk-Jovanović, L. (2003). Intenzitet govornog signala pacijenata sa depresivnim poremećajem (The intensity of the speech signal of the patients with a depressive disorder). Govor i jezik (pp.217–223). Beograd: Institut za eksperimentalnu fonetiku i patologiju govora.
Cummins, N., Epps, J., Breakspear, M., & Goecke, R. (2011). An Investigation of Depressed Speech Detection: Features and Normalization. Proceedings of the INTERSPEECH 2011, 12th Annual Conference of the International Speech Communication Association. Florence, Italy: International Speech Communication Association (pp.2997–3000).
https://doi.org/10.21437/Interspeech.2011-750
Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10–49.
https://doi.org/10.1016/j.specom.2015.03.004.
Darby, J. K., Simmons, N., & Berger, P. A. (1984). Speech and voice parameters of depression: A pilot study. Journal of Communication Disorders, 17(2), 75–85.
https://doi.org/10.1016/0021-9924(84)90013-3,
Ellgring, H., & Scherer, R. (1996). Vocal indicators of mood change in depression. Journal of Nonverbal Behavior, 20(2), 83–110.
https://doi.org/10.1007/BF02253071.
Fuller, B. F., Horii, Y., & Conner, D. A. (1992). Validity and reliability of nonverbal voice measures as indicators of stressor-provoked anxiety. Research in Nursing & Health, 15(5), 379–389.
https://doi.org/10.1002/nur.4770150507
Hashim, N. W., Wilkes, M., Salomon, R., Meggs, J., & France, D. J. (2017). Evaluation of voice acoustics as predictors of clinical depression scores. Journal of Voice, 31(2), 256.e1–256.e6.
https://doi.org/10.1016/j.jvoice.2016.06.006
He, L., & Cao, C. (2018). Automated depression analysis using convolutional neural networks from speech. Journal of Biomedical Informatics, 83, 103–111.
https://doi.org/10.1016/j.jbi.2018.05.007
Heđever, M. (2012). Govorna akustika (Speech acoustics). Zagreb: Zagreb University, Faculty of Education and Rehabilitation Sciences
Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b Accessed February 2022.
Jiang, H., Hu, B., Liu, Z., Yan, L., Wang, T., Liu, F., Kang, H., & Li, X. (2017). Investigation of different speech types and emotions for detecting depression using different classifiers. Speech Communication, 90, 39–46.
https://doi.org/10.1016/j.specom.2017.04.001
Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129(5), 770–814.
https://doi.org/10.1037/0033-2909.129.5.770
Kiss, G., & Jenei, A. Z. (2020). Investigation of the accuracy of depression prediction based on speech processing. 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp.129–132.)
https://doi.org/10.1109/TSP49548.2020.9163495
Kosztyła-Hojna, B., Moskal, D., Łobaczuk-Sitnik, A., Kraszewska, A., Zdrojkowski, M., Biszewska, J., & Skorupa, M. (2018). Psychogenic voice disorders. Otolaryngologia polska, 72(4), 26–34.
https://doi.org/10.5604/01.3001.0012.0636
Kuny, S., & Stassen, H. H. (1993). Speaking behavior and voice sound characteristics in depressive patients during recovery. Journal of Psychiatric Research, 27(3), 289–307.
https://doi.org/10.1016/0022-3956(93)90040-9
Lopez-Otero, P., & Docio-Fernandez, L. (2020). Analysis of gender and identity issues in depression detection on de-identified speech. Computer Speech & Language, 101118.
https://doi.org/10.1016/j.csl.2020.101118
Low, L.-S. A., Maddage, M. C., Lech, M., Sheeber, L. B., & Allen, N. B. (2011). Detection of clinical depression in adolescents' speech during family interactions. IEEE Transactions on Biomedical Engineering, 58(3), 574–586.
https://doi.org/10.1109/TBME.2010.2091640
Milutinovic, Z. (1997). Klinički atlas poremećaja glasa: Teorija i praksa [Clinical atlas of voice disorders: Theory and practice]. Belgrade: Institute for textbook publishing and teaching aids.
Moore, E. I. I., Clements, M., Peifer, J., & Weisser, L. (2004). Comparing objective feature statistics of speech for classifying clinical depression. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 17–20.
https://doi.org/10.1109/IEMBS.2004.1403079
Mundt, J. C., Snyder, P. J., Cannizzaro, M. S., Chappie, K., & Geralts, D. S. (2007). Voice acoustic measures of depression severity and treatment response collected via interactive voice response (IVR) technology. Journal of Neurolinguistics, 20(1), 50–64.
https://doi.org/10.1016/j.jneuroling.2006.04.001
Mundt, J. C., Vogel, A. P., Feltner, D. E., & Lenderking, W. R. (2012). Vocal acoustic biomarkers of depression severity and treatment response. Biological Psychiatry, 72(7), 580–587.
https://doi.org/10.1016/j.biopsych.2012.03.015
Nilsonne, A. (1988). Speech characteristics as indicators of depressive illness. Acta Psychiatrica Scandinavica, 77(3), 253–263.
https://doi.org/10.1111/j.1600-0447.1988.tb05118.x
Nunes, A., Coimbra, R. L., & Teixeira, A. (2010). Voice quality of European Portuguese emotional speech. Computational Processing of the Portuguese Language, International Conference on Computational Processing of the Portuguese Language, 6001, (pp.142–151.)
https://doi.org/10.1007/978-3-642-12320-7_19
Ozdas, A., Shiavi, R. G., Silverman, S. E., Silverman, M. K., & Wilkes, D. M. (2004). Investigation of vocal jitter and glottal flow spectrum as possible cues for depression and near-term suicidal risk. IEEE Transactions on Biomedical Engineering, 51(9), 1530–1540.
https://doi.org/10.1109/TBME.2004.827544
Ozdas, A., Shiavi, R. G., Silverman, S. E., Silverman, M. K., & Wilkes, D. M. (2000). Analysis of fundamental frequency for near term suicidal risk assessment. SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics. "Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions", 5, 1853–1858.
https://doi.org/10.1109/ICSMC.2000.886379
Patel, S., & Scherer, K. R. (2013). Vocal behaviour. In: Hall JA, Knapp ML, editors. Handbook of nonverbal communication. Berlin: Mouton-DeGruyter (pp.167–204.)
https://doi.org/10.1515/9783110238150.167
Petrović-Lazić, M., Babac, S., Ivanković, Z., & Kosanović, R. (2009). Multidimenzionalna akustička analiza patološkog glasa (Multidimensional Acoustic Analysis of Pathological Voice). Srpski arhiv za celokupno lekarstvo, 137(5-6), 234–238.
https://doi.org/10.2298/SARH0906234P
Petrović-Lazić, M., Jovanović, N., Kulić, N., Babac, S., & Jurisić, V. (2014). Acoustic and perceptual characteristics of the voice in patients with vocal polyps after surgery and voice therapy. Journal of Voice, 29(2), 241–246.
https://doi.org/10.1016/j.jvoice.2014.07.009
Popović, M. (2003). Akustičke karakteristike govora i psihološko-emocionalni faktori (Acoustic characteristics of speech and psychological-emotional factors). Govor i jezik (pp.210–216.), Beograd: Institut za eksperimentalnu fonetiku i patologiju govora
Quatieri, T., & Malyska, N. (2012). Vocal-source biomarkers for depression: A link to psychomotor activity, In Interspeech 2012, 13th Annual Conference of the International Speech Communication Association Portland, OR, USA
https://doi.org/10.21437/Interspeech.2012-311
Rejaibi, E., Komaty, A., Meriaudeau, F., Agrebi, S., & Othmani, A. (2022). MFCC-based recurrent neural network for automatic clinical depression recognition and assessment from speech. Biomedical Signal Processing and Control, 71, 103107.
https://doi.org/10.1016/j.bspc.2021.103107
Ritchie, H. & Roser, M. (2018). Mental Health. Our World in Data. https://ourworldindata.org/mental-health Accessed June 2022.
Roussel, N. C., & Lobdell, M. (2006). The clinical utility of the soft phonation index. Clinical Linguistics & Phonetics, 20(2-3), 181–186.
https://doi.org/10.1080/02699200400026942
Sahu, S., & Espy-Wilson, C. (2016). Speech features for depression detection. The Interspeech 2016, 17th Annual Conference of the International Speech Communication Association (pp.1928–1932.)
https://doi.org/10.21437/Interspeech.2016-1566
Scherer, K. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40(1-2), 227–256.
https://doi.org/10.1016/S0167-6393(02)00084-5
Scherer, K. R. (1986). Vocal affect expression: A review and a model for future research. Psychological Bulletin, 99(2), 143–165.
https://doi.org/10.1037/0033-2909.99.2.143
Scherer, K. R., Clark-Polner, E., & Mortillaro, M. (2011). In the eye of the beholder? Universality and cultural specificity in the expression and perception of emotion. International Journal of Psychology, 46(6), 401–435.
https://doi.org/10.1080/00207594.2011.626049
Silva, W. J., Lopes, L., Galdino, M. K. C., & Almeida, A. A. (2021). Voice acoustic parameters as predictors of depression. Journal of Voice, Article in Press
https://doi.org/10.1016/j.jvoice.2021.06.018
Sturim, D.E., Torres-Carrasquillo, P.A., Quatieri, T., & Malyska, N. (2011). Automatic detection of depression in speech using Gaussian Mixture Modeling with factor analysis. Interspeech 2011, 12th Annual Conference of the International Speech Communication Association, Florence, Italy
https://doi.org/10.21437/Interspeech.2011-746
Taguchi, T., Tachikawa, H., Nemoto, K., Suzuki, M., Nagano, T., Tachibana, R., Nishimura, M., & Arai, T. (2018). Major depressive disorder discrimination using vocal acoustic features. Journal of Affective Disorders, 225, 214–220.
https://doi.org/10.1016/j.jad.2017.08.038
Teixeira, J. P., & Fernandes, P. O. (2015). Acoustic analysis of vocal dysphonia. Procedia Computer Science, 64, 466–473.
https://doi.org/10.1016/j.procs.2015.08.544
Wang, J., Zhang, L., Liu, T., Pan, W., Hu, B., & Zhu, T. (2019). Acoustic differences between healthy and depressed people: a cross-situation study. BMC Psychiatry, 19(1).
https://doi.org/10.1186/s12888-019-2300-7
World Health Organization. Depression and other common mental disorders: Global health estimates. World Health Organization; 2017. http://www.who.int/iris/handle/10665/254610 Accessed August 2021.
Xing, Y., Liu, Z., Li, G. Ding, Z., & Hu, B. (2022). 2-level hierarchical depression recognition method based on task-stimulated and integrated speech features. Biomedical Signal Processing and Control, 72, 103287.
https://doi.org/10.1016/j.bspc.2021.103287
Yang, B., & Lugger, M. (2010). Emotion recognition from speech signals using new harmony features. Signal Processing, 90(5), 1415–1423.
https://doi.org/10.1016/j.sigpro.2009.09.009
Yang, Y., Fairbairn, C., & Cohn, J. F. (2013). Detecting depression severity from vocal prosody. IEEE Transactions on Affective Computing, 4(2), 142–150.
https://doi.org/10.1109/T-AFFC.2012.38
Zwetsch, I., Fagundes, R., Russomano, T., & Scolari, D. (2006). Digital signal processing in the differential diagnosis of benign larynx diseases. Scientia Medica, 16(3), 109.
Authors retain the copyright of the published papers and grant to the publisher the nonexclusive right to publish the article, to be cited as its original publisher in case of re-use, and to distribute it in all forms and media. The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA). It is allowed to copy and redistribute the material in any medium or format, and remix, transform and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original
author(s), a link to the license is provided, it is indicated if changes were made and the new work is distributed under the same license as the original. Authors are permitted to deposit the author’s publisher’s version (PDF) of their work in an institutional repository, subject-based repository, author’s personal website (including social networking sites, such as ResearchGate, Academia.edu, etc.), and/or departmental website at any time after publication, with an acknowledgment of its initial publication in this journal.