ANALYSIS OF TP53, APC, KRAS, AND MMR GENETIC MUTATIONS IN COLORECTAL CANCER: A REVIEW ARTICLE
Abstract
Introduction: Colorectal cancer (CRC) is one of the most common malignancies with significant global health and economic implications. Genetic mutations in genes such as TP53, APC, KRAS, and MMR play a crucial role in the development and progression of this cancer. This review paper analyzes current knowledge about the impact of these mutations on colorectal carcinogenesis, using available literature. Objective: To provide a comprehensive review of the role of genetic mutations in TP53, APC, KRAS, and MMR genes in the development of colorectal cancer and to consider their impact on diagnosis and treatment. Materials and Methods: This review examines peer-reviewed research articles and reports sourced from databases such as PubMed, Google Scholar, and other academic sources. The focus was on studies investigating genetic mutations, their prevalence, and their role in the pathogenesis of CRC. Results: Mutations in the TP53 gene, present in more than 50% of CRC cases, are critical for malignant cell transformations. KRAS mutations, found in about 50% of cases, lead to abnormal signaling contributing to unchecked proliferation. APC mutations are associated with hereditary predisposition to CRC, while MMR genes, such as MLH1 and MSH2, play a key role in DNA repair and are linked to hereditary nonpolyposis colorectal cancer.
Conclusion: Genetic mutations in TP53, APC, KRAS, and MMR genes play a significant role in the development of colorectal cancer. A deeper understanding of these mutations may significantly enhance diagnostic and therapeutic strategies, guiding future research in this rapidly evolving field.
References
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10 [Internet]. Lyon (France): International Agency for Research on Cancer; 2018 [cited 2019 Jul 15]. Available from: http://globocan.iarc.fr. (Accessed 2024 Aug 10.).
Currais P, Rosa I, Claro I. Colorectal cancer carcinogenesis: From bench to bedside. World J Gastrointest Oncol. 2022;14(3):654-63. doi:10.4251/wjgo.v14.i3.654.
Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012;5(1):19-27.
Munteanu I, Mastalier B. Genetics of colorectal cancer. J Med Life. 2014;7(4):507-11.
Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, et al. Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep. 2019; 28(5):1370-84. doi: 10.1016/j.celrep.2019.07.001.
Zhu G, Pei L, Xia H, Tang Q, Bi F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer. 2021;20(1):143. doi: 10.1186/s12943-021-01441-4.
Yen T, Stanich PP, Axell L, Patel GS. APC-associated polyposis conditions. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1345/.
Carsote M, Turturea IF, Turturea MR, Valea A, Nistor C, Gheorghisan-Galateanu AA. Pathogenic insights into DNA mismatch repair (MMR) genes-proteins and microsatellite instability: focus on adrenocortical carcinoma and beyond. Diagnostics (Basel). 2023;13(11):1867. doi: 10.3390/diagnostics13111867.
Ottaiano A, Santorsola M, Caraglia M, Circelli L, Gigantino V, Botti G, et al. Genetic regressive trajectories in colorectal cancer: A new hallmark of oligo-metastatic disease? Transl Oncol. 2021;14(8):101131. doi: 10.1016/j.tranon.2021.101131.
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 2023;8(1):92. doi: 10.1038/s41392-023-01347-1.
Prall F, Hühns M. Quantitative evaluation of TP53 immunohistochemistry to predict gene mutations: lessons learnt from a series of colorectal carcinomas. Hum Pathol. 2019;84:246-53. doi: 10.1016/j.humpath.2018.10.012.
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021;6(1):386. doi: 10.1038/s41392-021-00780-4.
Timar J, Kashofer K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 2020;39(4):1029-38. doi: 10.1007/s10555-020-09915-5.
Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Crucial role of oncogenic KRAS mutations in apoptosis and autophagy regulation: therapeutic implications. Cells. 2022;11(14):2183. doi: 10.3390/cells11142183.
Menon G, Carr S, Kasi A. Familial adenomatous polyposis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538233/.
Grover S, Kastrinos F, Steyerberg EW, Cook EF, Dewanwala A, Burbidge LA, et al. Prevalence and phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. JAMA. 2012;308(5):485-92. doi: 10.1001/jama.2012.8780.
Passmore LA. The anaphase-promoting complex (APC): the sum of its parts?. Biochem Soc Trans. 2004;32(Pt 5):724-7. doi: 10.1042/BST0320724.
MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9-26. doi: 10.1016/j.devcel.2009.06.016.
Aitchison A, Hakkaart C, Day RC, Morrin HR, Frizelle FA, Keenan JI. APC mutations are not confined to hotspot regions in early-onset colorectal cancer. Cancers (Basel). 2020;12(12):3829. doi: 10.3390/cancers12123829.
Zhang M, Chen T. Overview on population screening for carriers with germline mutations in mismatch repair (MMR) genes in China. Hered Cancer Clin Pract. 2021;19(1):26. doi: 10.1186/s13053-021-00182-1.
Cui S, Zhang X, Zou R, Ye F, Wang Y, Sun J. MLH1 exon 12 gene deletion leading to Lynch syndrome: a case report. Oncol Res Treat. 2021;44(7-8):414-21. doi: 10.1159/000516659.
Seifert M, Reichrath J. The role of the human DNA mismatch repair gene hMSH2 in DNA repair, cell cycle control and apoptosis: implications for pathogenesis, progression and therapy of cancer. J Mol Histol. 2006;37(5-7):301-7. doi: 10.1007/s10735-006-9062-5.
Pathak SJ, Mueller JL, Okamoto K, Das B, Hertecant J, Greenhalgh L, et al. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat. 2019;40(2):142-61. doi: 10.1002/humu.23688.
Curia MC, Catalano T, Aceto GM. MUTYH: not just polyposis. World J Clin Oncol. 2020;11(7):428-49. doi: 10.5306/wjco.v11.i7.428.
Bauer AH, Basta DW, Hornick JL, Dong F. Loss of function SMAD4 nonstop mutations in human cancer. Histopathology. 2023;82(7):1098-104. doi: 10.1111/his.14880.
Jiang YL, Zhao ZY, Li BR, Wang H, Yu ED, Ning SB. STK11 gene analysis reveals a significant number of splice mutations in Chinese PJS patients. Cancer Genet. 2019;230:47-57. doi: 10.1016/j.cancergen.2018.11.008.
Luo S, Ou Y, Zheng T, Jiang H, Wu Y, Zhao J, et al. Optimal strategy for colorectal cancer patients' diagnosis based on circulating tumor cells and circulating tumor endothelial cells by subtraction enrichment and immunostaining-fluorescence in situ hybridization combining with CEA and CA19-9. J Oncol. 2021;2021:1517488. doi: 10.1155/2021/1517488.
Hinoi T. Cancer genomic profiling in colorectal cancer: current challenges in subtyping colorectal cancers based on somatic and germline variants. J Anus Rectum Colon. 2021;5(3):213-28. doi: 10.23922/jarc.2021-009.
Chubarov AS, Oscorbin IP, Filipenko ML, Lomzov AA, Pyshnyi DV. Allele-specific PCR for KRAS mutation detection using phosphoryl guanidine modified primers. Diagnostics (Basel). 2020;10(11):872. doi: 10.3390/diagnostics10110872.
Abbes S, Baldi S, Sellami H, Amedei A, Keskes L. Molecular methods for colorectal cancer screening: progress with next-generation sequencing evolution. World J Gastrointest Oncol. 2023;15(3):425-42. doi: 10.4251/wjgo.v15.i3.425.
Chung DC, Gray DM 2nd, Singh H, Issaka RB, Raymond VM, Eagle C, et al. A cell-free DNA blood-based test for colorectal cancer screening. N Engl J Med. 2024; 390(11):973-83. doi: 10.1056/NEJMoa2304714.
Hasbullah HH, Musa M. Gene therapy targeting p53 and KRAS for colorectal cancer treatment: a myth or the way forward? Int J Mol Sci. 2021;22(21):11941. doi: 10.3390/ijms222111941.
Van Wyk R, Slezak P, Hayes VM, Buys CH, Kotze MJ, de Jong G, et al. Somatic mutations of the APC, KRAS, and TP53 genes in nonpolypoid colorectal adenomas. Genes Chromosomes Cancer. 2000;27(2):202-8.
Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60(16):4366-71.
Ilyas M, Tomlinson I. Genetic pathways in colorectal cancer. Histopathology. 1996;28(5):389-99. doi: 10.1046/j.1365-2559.1996.339381.x.
Elsaid A, Zahran R, Elshazli R, El-Sayed A, Abou Samra M, El-Tarapely F, et al. Genetic polymorphisms of TP53 Arg72Pro and Pro47Ser among Egyptian patients with colorectal carcinoma. Arch Physiol Biochem. 2019;125(3):255-62. doi: 10.1080/13813455.2018.1453522.
Scott N, Sager P, Stewart J, Blair G, Dixon M, Quirke P. p53 in colorectal cancer. Ann Oncol. 1996;7:883-5.
Qunaj L, May MS, Neugut AI, Herzberg BO. Prognostic and therapeutic impact of the KRAS G12C mutation in colorectal cancer. Front Oncol. 2023;13:1252516. doi: 10.3389/fonc.2023.1252516.
Wang J, Yi Y, Xiao Y, Dong L, Liang L, Teng L, et al. Prevalence of recurrent oncogenic fusion in mismatch repair-deficient colorectal carcinoma with hypermethylated MLH1 and wild-type BRAF and KRAS. Mod Pathol. 2019;32(7):1053-64. doi: 10.1038/s41379-019-0212-1.
Ryan BM, Robles AI, Harris CC. KRAS-LCS6 genotype as a prognostic marker in early-stage CRC–letter. Clin Cancer Res. 2012;18(12):3487-8. doi: 10.1158/1078-0432.CCR-12-0250.
Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3′ UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17(24):7723-31. doi: 10.1158/1078-0432.CCR-11-0990.
Yanus GA, Akhapkina TA, Ivantsov AO, Preobrazhenskaya EV, Aleksakhina SN, Bizin IV, et al. Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies. Clin Genet. 2018;93(5):1015-21. doi: 10.1111/cge.13228.
Rosales-Reynoso MA, Saucedo-Sariñana AM, Contreras-Díaz KB, Márquez-González RM, Barros-Núñez P, Pineda-Razo TD, et al. Genetic polymorphisms in APC, DVL2, and AXIN1 are associated with susceptibility, advanced TNM stage or tumor location in colorectal cancer. Tohoku J Exp Med. 2019;249(3):173-83. doi: 10.1620/tjem.249.173.
Ni K, Zhan Y, Liu Z, Yuan Z, Wang S, Zhao XZ, et al. Survival outcomes in locally advanced dMMR rectal cancer: surgery plus adjunctive treatment vs. surgery alone. BMC Cancer. 2023;23(1):1013. doi: 10.1186/s12885-023-11525-7.
Yang T, Li X, Montazeri Z, Little J, Farrington SM, Ioannidis JPA, et al. Gene-environment interactions and colorectal cancer risk: An umbrella review of systematic reviews and meta-analyses of observational studies. Int J Cancer. 2019;145(9):2315-29. doi: 10.1002/ijc.32057.
Djansugurova L, Zhunussova G, Khussainova E, Iksan O, Afonin G, Kaidarova D, et al. Association of DCC, MLH1, GSTT1, GSTM1, and TP53 gene polymorphisms with colorectal cancer in Kazakhstan. Tumour Biol. 2015;36(1):279-89. doi: 10.1007/s13277-014-2641-2.
Ciepiela I, Szczepaniak M, Ciepiela P, Hińcza-Nowak K, Kopczyński J, Macek P, et al. Tumor location matters, next generation sequencing mutation profiling of left-sided, rectal, and right-sided colorectal tumors in 552 patients. Sci Rep. 2024;14:4619. doi:10.1038/s41598-024-55139-w.
McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med. 2019;9(11): a036798. doi: 10.1101/cshperspect.a036798.
Li J, Ma X, Chakravarti D, Shalapour S, DePinho RA. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021;35(11-12):787-820. doi:10.1101/gad.348226.120.
Zhu G, Pei L, Xia H, Tang Q, Bi F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer. 2021;20(1):143. doi:10.1186/s12943-021-01441-4.
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, et al. Microsatellite instability: a review of molecular epidemiology and implications for immune checkpoint inhibitor therapy. Cancers. 2023;15(8):2288. doi:10.3390/cancers15082288.
Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Gain of Function (GOF) mutant p53 in cancer-current therapeutic approaches. Int J Mol Sci. 2022;23(21):13287. doi:10.3390/ijms232113287.
Michel M, Kaps L, Maderer A, Galle PR, Moehler M. The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers (Basel). 2021;13(10):2296. doi:10.3390/cancers13102296.
Thota R, Yang M, Pflieger L, Schell MJ, Rajan M, Davis TB, et al. APC and TP53 mutations predict cetuximab sensitivity across consensus molecular subtypes. Cancers. 2021;13(21):5394. doi:10.3390/cancers13215394.
Copyright (c) 2024 Sanamed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal Sanamed is published under an Open Access license. All its content is available free of charge. Users can read, download, copy, distribute, print, search the full text of articles, as well as establish HTML links to them, without having to seek the consent of the author or publisher.
The right to use content without consent does not release the users from the obligation to give the credit to the journal and its content in a manner described under CC BY.