INFECTIOUS DISEASES AND ANTIMICROBIAL RESISTANCE: CURRENT CLINICAL DEVELOPMENTS AND UPDATE

  • Ernest Herbert ERDOMO LLP, Whitley Bay, England and Wales, United Kingdom
  • Dominique Fournier ERDOMO LLP, Whitley Bay, England and Wales, United Kingdom
Keywords: Infectious diseases, host-pathogens interactions, microbial drug resistance, drug design, vaccine development

Abstract


Four years into the most virulent disease outbreaks of our generation—where COVID-19 became the most widely discussed infection, claiming millions of lives and leaving countless others suffering from long-term symptoms—host-pathogen interactions has never been more significant.This interplay between hosts and pathogens, alongside evolving risks of emerging infectious diseases, has been exacerbated by the exponential growth of human activities.This review focuses on host-pathogen interactions, the fight against antimicrobial resistance, the current status of antimicrobial usage, and alternative strategies to address this global health crisis.

Author Biographies

Ernest Herbert, ERDOMO LLP, Whitley Bay, England and Wales, United Kingdom

ORCID ID: 0000-0001-7540-4550

Dominique Fournier, ERDOMO LLP, Whitley Bay, England and Wales, United Kingdom

ORCID  ID: 0000-0001-6560-0582

References

Janeway CAJ, Travers P, Walport M, Shlomchik MJ. The immune system in health and disease. Immunobiology. 5th ed. New York: Garland Science; 2001.

Southwood D, Ranganathan S. Host-pathogen interactions. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C, editors. Encyclopedia of bioinformatics and computational biology. 1: Elsevier; 2019.

Pezacki JP. Taking Aim at Host-Pathogen Interactions. ACS Infect Dis. 2016;2(11):744-5. doi: 10.1021/acsinfecdis.6b00182.

Morizono K, Chen IS. Receptors and tropisms of envelope viruses. Cur Opin Virol. 2011;1(1):13-8. doi: 10.1016/j.coviro.2011.05.001.

Krishnaraj PU, Arun YP, Namdev CD, Jahagirdar S. Molecular basis of host–pathogen interaction: an overview. In: Rajpal VR, Singh I, Navi SS, editors. Fungal diversity, ecology and control management. Fungal Biology. Singapore: Springer; 2022. p. 539-56.

Gray A, Sharara F. Global and regional sepsis and infectious syndrome mortality in 2019: a systematic analysis. The Lancet Global Health. 2022;10(S2). doi: 10.1016/S2214-109X(22)00131-0.

Larkin H. Increasing antimicrobial resistance poses global threat, WHO says. JAMA cardiology. 2023;329(3):200. doi: 10.1001/jama.2022.23552.

Adedeji WA. The Treasure Called Antibiotics. Ann Ib Postgrad Med. 2016;14(2):56-7.

Rutala WA, Weber DJ, Barbee SL, Gergen MF, Sobsey MD, Samsa GP, et al. Evaluation of antibiotic-resistant bacteria in home kitchens and bathrooms: Is there a link between home disinfectant use and antibiotic resistance? Am J Infect Control. 2023;51(11S):A158-A63. doi: 10.1016/j.ajic.2023.04.005.

Organization WH. Antimicrobial resistance: Global report on surveillance 2014. Geneva: WHO, 2014 30 April 2014. Report No.

Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, et al. Antimicrobial activity and resistance: influencing factors. Front Pharmacol. 2017;8:364. doi:10.3389/fphar.2017.00364.

Rendtorff RC. The experimental transmission of human intestinal protozoan parasites. II. Giardia lamblia cysts given in capsules. Am J Hyg. 1954;59(2):209-20. doi: 10.1093/oxfordjournals.aje.a119634.

Overstreet RM, Lotz JM. Host–symbiont relationships: understanding the change from guest to pest. In: CH, editor. The Rasputin effect: when commensals and symbionts become parasitic.advances in environmental microbiology. Switzerland: Springer, Cham; 2016.p.27- 64. doi: 10.1007/978-3-319-28170-4_2.

Bergkessel M, Forte B, Gilbert IH. Small-molecule antibiotic drug development: need and challenges. ACS Infect Dis. 2023;9(11):2062-71. doi: 10.1021/acsinfecdis.3c00189.

Wasan H, Singh D, Reeta KH, Gupta YK. Landscape of push funding in antibiotic research: current status and way forward. Biology. 2023;12(1):101. doi: 10.3390/biology12010101.

Clancy CJ, Nguyen MH. Buying Time: The AMR action fund and the state of antibiotic development in the United States 2020. Open Forum Infect Dis. 2020;7(11) :ofaa464. doi: 10.1093/ofid/ofaa464.

Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, et al. Futuristic non- antibiotic therapies to combat antibiotic resistance: a review. Front Microbiol. 2021;12:609459, doi: 10.3389/fmicb.2021.609459.

Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, et al. Alternatives therapeutic approaches to conventional antibiotics: advantages, limitations and potential application in medicine. Antibiotics. 2022;11(12):1826. doi: 10.3390/antibiotics11121826.

Chen Q, Dharmaraj T, Cai PC, Burgener EB, Haddock NL, Spakowitz AJ, et al. Bacteriophage and bacterial susceptibility, resistance, and tolerance to antibiotics. Pharmaceutics. 2022;14(7):1425. doi: 10.3390/pharmaceutics14071425.

Costa de Pontes JT, Borges ABT, Roque-Borda CA, Pavan FR. Antimicrobial peptides as an alternative for the eradication of bacterial biofilms of multi-drug resistant bacteria. Pharmaceutics. 2022;14(3):642. doi: 10.3390/pharmaceutics14030642.

Sussmuth RD, Mainz A. Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl. 2017;56(14):3770-821. doi: 10.1002/anie.201609079.

Subramanian A. Emerging roles of bacteriophage-based therapeutics in combating antibiotic resistance. Front Microbiol. 2024;15:1384164. doi:10.3389/fmicb.2024.1384164.

Wong SS. Phage probiotics. In: Nicastro J, Wong S, Khazaei Z, Lam P, Blay J, Slavcek RA, editors.Bacteriophage applications-historical perspective and future potential. Springer Briefs in Biochemistry and Molecular Biology 1st ed. Switzerland: Springer, Cham; 2016. p. 39-58. doi:10.1007/978-3-319-45791-8_5.

Van Goethem MW, Marasco R, Hong PY, Daffonchio D. The antibiotic crisis: On the search for novel antibiotics and resistance mechanisms. Microb Biotechnol. 2024;17(3):e14430. doi: 10.1111/1751-7915.14430.

Plackett B. Three ways to combat antimicrobial resistance. Nature. 2022;612(7940):S33. doi: 10.1038/d41586-022-04213-2.

Kolbe BH, Coad B, Richter K. Plasma-activated water’s potential contribution to ‘One Health’. MicrobiologyAustralia. 2024;45:83-7.doi: 10.1071/MA24024.

McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147-79. doi: 10.1128/CMR.12.1.147.

Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023;11(6):1614. doi: 10.3390/microorganisms11061614.

Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, et al. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB life. 2020;72(7):1271-85. doi: 10.1002/iub.2266.

Baker JM, Baba-Dikwa A, Shah R, Lea S, Singh D. Gallium protoporphyrin as an antimicrobial for non-typeable Haemophilus influenzae in COPD patients. Life Sci. 2022;305:120794. doi: 10.1016/j.lfs.2022.120794.

Xia W, Li N, Shan H, Lin Y, Yin F, Yu X, et al. Gallium Porphyrin and Gallium Nitrate reduce the high Vancomycin tolerance of MRSA biofilms by promoting extracellular DNA-dependent biofilm dispersion. ACS Infect Dis. 2021;7(8):2565-82. doi: 10.1021/acsinfecdis.1c00280.

Sandiford SK. What is an ideal antibiotic and what does this mean for future drug discovery and design? Expert Opin Drug Discov. 2023;18(5):485-90. doi: 10.1080/17460441.2023.2198701.

Gajdacs M. The concept of an ideal antibiotic: implications for drug design. Molecules. 2019;24(5):892. doi: 10.3390/molecules24050892.

Ren Y, Chakraborty T, Doijad S, Falgenhauer L, Falgenhauer J, Goesmann A, et al. Deep transfer learning enables robust prediction of antimicrobial resistance for novel antibiotics. Antibiotics. 2022;11(11):1611. doi: 10.3390/antibiotics11111611.

Hetta HF, Ramadan YN, Al-Harbi AI, EAA, Battah B, AbdEllah NH, et al. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines. 2023;11(2):413. doi: 10.3390/biomedicines11020413.

Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A. Antimicrobial nanomaterials: a review. Hygiene. 2023;3(3):269-90. doi:10.3390/hygiene3030020.

Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. ACS Med Chem Lett. 2020;11(6):1069-73, doi: 10.1021/acsmedchemlett.0c00075.

Tobin EH. Nanotechnology applications for infectious Ddseases. In: Brenner S, editor. The clinical nanomedicine handbook. 1st ed. Boca Raton: CRC Press; 2013. pp. 365.

Kianfar E. A comparison and assessment on performance of Zeolite catalyst based selective for the process methanol to gasoline: a review. In: Taylor JC, editor. Advances in chemistry research. New York: Nova Science Publishers, Inc.; 2020.

Nakamura T, Yamada K, Sato Y, Harashima H. Lipid nanoparticles fuse with cell membranes of immune cells at low temperatures leading to the loss of transfection activity. Int J Pharm. 2020;587:119652. doi: 10.1016/j.ijpharm.2020.119652.

Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery: Intech Open; 2014. doi: 10.5772/58459.

Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:587997. doi: 10.3389/fmolb.2020.587997.

Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J. 2021;29(9):999-1012. doi: 10.1016/j.jsps.2021.07.015.

Wilson RJ, Li Y, Yang G, Zhao C-H. Nanoemulsions for drug delivery. Particuology. 2022;64:85-97. doi: 10.1016/j.partic.2021.05.009.

Viegas C, Patricio AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review. Pharmaceutics. 2023;15(6):1593. doi: 10.3390/pharmaceutics15061593.

Ochekpe NA, Olorunfemi PO, Ngwuluka NC. Nanotechnology and drug delivery. Part 2: nanostructures for drug delivery. Trop J Pharm Res. 2009;8(3):275- 87. doi: 10.4314/TJPR.V8I3.44547.

Nastri BM, Pagliano P, Zannella C, Folliero V, Masullo A, Rinaldi L, et al. HIV and drug- resistant subtypes. Microorganisms. 2023;11(1):221. doi: 10.3390/microorganisms11010221.

Sorci G, Faivre B. Age-dependent virulence of human pathogens. PLoS pathogens. 2022;18(9):e1010866, doi: 10.1371/journal.ppat.1010866.

Sharma A, Virmani T, Pathak V, Sharma A, Pathak K, Kumar G, et al. Artificial intelligence- based data-driven strategy to accelerate research, development, and clinical trials of COVID vaccine. Biomed Res Int. 2022; 2022: 7205241. doi:10.1155/2022/7205241.

María RR, Arturo CJ, Alicia JA, Paulina MG, Gerardo AO. The impact of bioinformatics on vaccine design and development. In: Afrin F, Hemeg H, Ozbak H, editors. Vaccines: IntechOpen; 2017. pp. 192. doi: 10.5772/intechopen.69273.

Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect. 2012;18 (Suppl 5):109-16. doi:10.1111/j.1469-0691.2012.03939.x.

Chopra H, Annu, Shin DK, Munjal K, Priyanka, Dhama K, et al. Revolutionizing clinical trials: the role of AI in accelerating medical breakthroughs. Int J Surg. 2023;109(12):4211-20. doi: 10.1097/JS9.0000000000000705.

You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, et al. The mRNA vaccine technology era and the future control of parasitic infections. Clin Microbiol Rev. 2023;36(1):e0024121. doi: 10.1128/cmr.00241-21.

Ivory C, Chadee K. DNA vaccines: designing strategies against parasitic infections. Genet Vaccines Ther. 2004;2(1):17. doi: 10.1186/1479-0556-2-17.

Navalkele BD, Chopra T. Bezlotoxumab: an emerging monoclonal antibody therapy for prevention of recurrent Clostridium difficile infection. Biologics.2018;12:11- 21. doi: 10.2147/BTT.S127099.

Darbandi A, Abdi M, Dashtbin S, Yaghoubi S, Sholeh M, Kouhsari E, et al. Antibody- antibiotic conjugates: a comprehensive review on their therapeutic potentials against bacterial infections. J Clin Lab Anal. 2024;38(10):e25071. doi: 10.1002/jcla.25071.

Organization WH. Global Antimicrobial Resistance and Use of Surveillance System (GLASS) Report 2022. WHO, 2022 9 December 2022. Report No.

Endale H, Mathewos M, Abdeta D. Potential causes of spread of antimicrobial resistance and preventive measures in one health perspective-a review. Infect Drug Resist. 2023;16:7515-45, doi: 10.2147/IDR.S428837.

Published
2024/12/14
Section
Review article