COMPARATIVE ANALYSIS OF SURGICAL OUTCOMES IN AO-OTA 31-A2 FRACTURES: TWO-HOLE VS. FOUR-HOLE DYNAMIC HIP SCREW
Abstract
Background: The choice of implant for the treatment of multifragmentary pertrochanteric fractures AO-OTA 31-A2 is complex, and the dynamic hip screw (DHS) can be used as a biomechanically safe and cost-effective option. Surgeons typically choose between DHS plates with two or four holes. The primary aim of this study was to determine whether there is a difference in surgery time, hospital stay, intraoperative blood loss, and incision length in patients with AO-OTA 31-A2 fractures treated with two-hole or four-hole DHS. The secondary aim was to compare the rate of complications, including fracture nonunion, implant breakage (DHS plate, sliding screw, compression screw, or cortical screws), cut-out, fracture collapse, and avascular necrosis.
Methods: This retrospective study included 94 patients with AO-OTA 31-A2 fractures treated with DHS implants containing either two or four holes. Patients were divided into two groups: Group A, which included 60 patients treated with a two-hole DHS plate, and Group B, which included 34 patients treated with a four-hole DHS plate.
Results: Group A had a significantly shorter surgery time (44.80± 8.01 minutes) compared to Group B (48.12 ± 5.43 minutes; p<0.05). Group A also had a significantly smaller incision (p<0.05). There were no significant differences between the two groups in terms of the remaining outcomes.
Conclusion: The absence of significant differences in complication rates supports the conclusion that both DHS types are viable options for the treatment of AO-OTA 31-A2 fractures.
References
Sing CW, Lin TC, Bartholomew S, Bell JS, Bennett C, Beyene K, et al. Global epidemiology of hip fractures: secular trends in incidence rate, post-fracture treatment, and all-cause mortality. J Bone Miner Res. 2023;38(8):1064-75. doi: 10.1002/jbmr.4821.
Li M, Lv HC, Liu JH, Cui X, Sun GF, Hu JW, et al. Differences in bone mineral density and hip geometry in trochanteric and cervical hip fractures in elderly Chinese patients. Orthop Surg. 2019;11(2):263-269. doi:10.1111/os.12456.
Meinberg E, Agel J, Roberts C, Karam M, Kellam J. Fracture and dislocation classification compendium—2018. J Orthop Trauma. 2018;32(1):S1-S10. doi:10.1097/bot.0000000000001063.
Baldock TE, Dixon JR, Koubaesh C, Johansen A, Eardley WGP. Variation of implant use in A1 and A2 trochanteric hip fractures : a study from the National Hip Fracture Database of England and Wales. Bone Jt Open. 2022;3(10):741-5. doi:10.1302/2633-1462.310.bjo-2022-0104.r1.
Mitković M, Milenković S, Micić I, Kostić I, Stojiljković P, Mitković M. Hip function and health-related quality of life in intramedullary and extramedullary internal fixation of trochanteric fractures. Srp Arh Celok Lek. 2020;148(7-8):451-4. doi:10.2298/sarh200301029m.
Palm, H. Hip Fracture: The Choice of Surgery. In: Falaschi, P., Marsh, D. (eds) Orthogeriatrics. Practical Issues in Geriatrics. Springer, Cham.2021:125-41. doi: 10.1007/978-3-030-48126-1_9
Kumar R, Menyah E, Thahir A, Thakur R, Malindzisa L, Relwani J. Management of trochanteric fractures: are we NICE compliant? Cureus. 2023;15(10):e47038. doi:10.7759/cureus.47038.
Grønhaug KML, Dybvik E, Matre K, Östman B, Gjertsen JE. Intramedullary nail versus sliding hip screw for stable and unstable trochanteric and subtrochanteric fractures. Bone Joint J. 2022;104-B(2):274-82. doi:10.1302/0301-620x.104b2.bjj-2021-1078.r1.
Wang D, Zhang K, Qiang M, Jia X, Chen Y. Computer-assisted preoperative planning improves the learning curve of PFNA-II in the treatment of intertrochanteric femoral fractures. BMC MusculoskeletDisord. 2020;21(1):34. doi:10.1186/s12891-020-3048-4.
Woldeyesus TA, Gjertsen JE, Dalen I, Meling T, Behzadi M, Harboe K, et al. Preoperative CT improves the assessment of stability in trochanteric hip fractures. Bone Jt Open. 2024;5(6):524-31. doi:10.1302/2633-1462.56.bjo-2023-0177.r1.
Andriollo L, Fravolini G, Sangaletti R, Perticarini L, Benazzo F, Rossi SMP. Angle-adjustable dynamic hip screw plate for unstable trochanteric fractures in middle-aged patients: mid-term outcomes and return to sport. J Clin Med. 2024;13(4):988. doi:10.3390/jcm13040988.
Schemitsch EH, Nowak LL, Schulz AP, Brink O, Poolman RW, Mehta S, et al.; INSITE Investigators. Intramedullary nailing vs sliding hip screw in trochanteric fracture management: the INSITE randomized clinical trial. JAMA Netw Open.2023;6(6):e2317164. doi:10.1001/jamanetworkopen.2023.17164.
Wessels JO, Bjarnesen MP, Erichsen JL, Palm H, Gundtoft PH, Viberg B. Sliding hip screw vs intramedullary nail for AO/OTA 31-A1–A3: a systematic review and meta-analysis. Injury. 2022;53(3):1149-59. doi:10.1016/j.injury.2021.12.034.
Mellema JJ, Janssen S, Schouten T, Haverkamp D, van der Bekerom MPJ, Ring D, et al. Intramedullary nailing versus sliding hip screw for A1 and A2 trochanteric hip fractures. Bone Joint J. 2021;103-B(4):775-81. doi:10.1302/0301-620x.103b.bjj-2020-1490.r1.
Zhang C, Xu B, Liang G, Zeng X, Zeng D, Chen D, et al. Optimizing stability in AO/OTA 31-A2 intertrochanteric fracture fixation in older patients with osteoporosis. J Int Med Res. 2018;46(5):1767-78. doi:10.1177/0300060518761504.
Makridis KG, Badras LS, Badras SL, Karachalios TS. Searching for the ‘winner’ hip fracture patient: the effect of modifiable and non-modifiable factors on clinical outcomes following hip fracture surgery. Hip Int. 2019;31(1):115-24. doi:10.1177/1120700019878814.
Lu Y, Uppal HS. Hip fractures: relevant anatomy, classification, and biomechanics of fracture and fixation. Geriatr Orthop Surg Rehabil. 2019;10:2151459319859139. doi:10.1177/2151459319859139.
McLoughlin SW, Wheeler DL, Rider J, Bolhofner B. Biomechanical evaluation of the dynamic hip screw with two- and four-hole side plates. J Orthop Trauma. 2000;14(5):318-23. doi:10.1097/00005131-200006000-00002.
Rog D, Grigsby P, Hill Z, Pinette W, Inceoglu S, Zuckerman L. A biomechanical comparison of the two- and four-hole side-plate dynamic hip screw in an osteoporotic composite femur model. J Orthop Surg (Hong Kong). 2017;25(2):2309499017717199. doi:10.1177/2309499017717199.
Wang CC, Lee CH, Chin NC, Chen KH, Pan CC, Su KC. Biomechanical analysis of the treatment of intertrochanteric hip fracture with different lengths of dynamic hip screw side plates. Technol Health Care. 2020;28(6):593-602. doi:10.3233/thc-202248.
Feng X, Qi W, Fang CX, Lu WW, Leung FKL, Chen B. Can barb thread design improve the pullout strength of bone screws? Bone Joint Res. 2021;10(2):105-12. doi:10.1302/2046-3758.102.bjr-2020-0072.r2.
Vanderkarr MF, Ruppenkamp JW, Vanderkarr M, Holy CE, Blauth M. Risk factors and healthcare costs associated with long bone fracture non-union: a retrospective US claims database analysis. JOrthop Surg Res. 2023;18(1):745. doi: 10.1186/s13018-023-04232-3
Fang C, Gudushauri P, Wong TM, Lau TW, Pun T, Leung F. Increased fracture collapse after intertrochanteric fractures treated by the dynamic hip screw adversely affects walking ability but not survival. Biomed Res Int. 2016;2016:4175092. doi:10.1155/2016/4175092.
Říha D, Bartoníček J. Internal fixation of pertrochanteric fractures using DHS with a two-hole side-plate. Int Orthop. 2009;34(6):877–82. doi: 10.1007/s00264-009-0840-z.
Dar FA, Iqbal Z, Lone AH, Ali N. Clinical and radiological results of minimally invasive two-hole dynamic hip screw fixation of stable intertrochanteric fractures: a prospective study of 50 patients. Int J Recent Surg Med Sci. 2023;10(1):67-74. doi:10.1055/s-0043-1761618.
Baird RP, O'Brien P, Cruickshank D. Comparison of stable and unstable pertrochanteric femur fractures managed with two- and four-hole side plates. Can J Surg. 2014;57(5):327-30. doi:10.1503/cjs.026113.
Ravikumar D, George U, Shetty DS. A comparative study of functional outcome between DHS and PFN in basicervical femur fracture. Int J Orthop Sci. 2023;9(2):1-15. doi:10.22271/ortho.2023.v9.i2a.3347.
Soni A, Munshi S, Radhamony NG, Nair R, Sreenivasan S. Dynamic hip screw plate length in stable intertrochanteric fracture neck of femur: a systematic review. Cureus. 2022;14(3):e23138. doi:10.7759/cureus.23138.
Bombah FM, Diawara M, Ekani BY, Nana T, Mikiela A. Complications after dynamic hip screw osteosynthesis of proximal femoral fractures at Army Instructional Hospital-Libreville. Case Rep Orthop. 2021;2021:4177203. doi:10.1155/2021/4177203.
Hsu CE, Chiu YC, Tsai SH, Lin TC, Lee MH, Huang KC. Trochanter stabilising plate improves treatment outcomes in AO/OTA 31-A2 intertrochanteric fractures with critical thin femoral lateral walls. Injury. 2015;46(6):1047-53. doi:10.1016/j.injury.2015.03.007.
Akinyemi TO, Mannan S, Ayeni FA. Pertrochanteric hip fracture fixation with 3 hole and 4 hole DHS side plates: a retrospective patient record review. Niger J Med. 2022;31(2):144-8. doi: 10.4103/NJM.NJM_120_21.
Ceynowa M, Zerdzicki K, Kl̵osowski P, Pankowski R, Rocławski M, Mazurek T. The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal: a biomechanical study of intertrochanteric fractures. Clin Biomech. 2020;71:201-7. doi:10.1016/j.clinbiomech.2019.11.006.
Copyright (c) 2025 Sanamed

This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal Sanamed is published under an Open Access license. All its content is available free of charge. Users can read, download, copy, distribute, print, search the full text of articles, as well as establish HTML links to them, without having to seek the consent of the author or publisher.
The right to use content without consent does not release the users from the obligation to give the credit to the journal and its content in a manner described under CC BY.
