Review of Therapeutic Options for Spinal Muscular Atrophy

Treatments approch for SMA

  • Dr Arun Singh SMS Medical College,Jaipur
  • Dr Monica Jain SMS MEDICAL COLLEGE,JAIPUR
  • Dr Rupa Kapadia SMS MEDICAL COLLEGE,JAIPUR
  • Dr Dhirendra Kumar Mahawar SMS MEDICAL COLLEGE,JAIPUR
  • Shivankan Kakkar SMS MEDICAL COLLEGE,JAIPUR
  • Dr Jaya Dadhich SMS MEDICAL COLLEGE,JAIPUR
  • Ritesh Kumar Chandel SMS MEDICAL COLLEGE,JAIPUR
Keywords: Spinal muscular atrophy, SMN-1, Rare disease frequency, Risdiplam, Nusinersen, Onasemnogene abeparvovec, Therapeutic approaches

Abstract


Spinal Muscular Atrophy (SMA) is uncommon genetic (autosomal recessive) disease that deteriorates neuromuscular function of the affected person’s body by causing lower motor neuron damage, progress in muscle atrophy and in advanced cases leads to paralysis of muscles. Mainly skeletal and respiratory muscles are involved. SMA is present due to lack of SMA proteins, which are encoded by survival motor neuron-1 (SMN-1) genes. In mutation of SMN-1 genes, deficiency of SMN proteins occurs. SMA affects all age groups, but mainly and most severely children younger than 6 months of age. At present, risdiplam is a treatment option and the drug has been approved by the US Food Drug and Administration on 7 August 2020. The availability of the drug has led to increased financial, ethical and medical problems. SMA affected populations are regularly challenged to these issues.

 

Author Biographies

Dr Arun Singh, SMS Medical College,Jaipur

Department of Pharmacology and Resident Doctor

Dr Monica Jain, SMS MEDICAL COLLEGE,JAIPUR

Department of pharmacology and senior professor

Dr Rupa Kapadia, SMS MEDICAL COLLEGE,JAIPUR

Department of Pharmacology and Profressor & Head of department

Dr Dhirendra Kumar Mahawar, SMS MEDICAL COLLEGE,JAIPUR

Department of Pharmacology and Assistant Professor

Shivankan Kakkar, SMS MEDICAL COLLEGE,JAIPUR

Department of Pharmacology and Assistant Professor

Dr Jaya Dadhich, SMS MEDICAL COLLEGE,JAIPUR

Department of Pharmacology and Senior Resident

Ritesh Kumar Chandel, SMS MEDICAL COLLEGE,JAIPUR

Department of Pharmacology and Senior Resident

References

Werdnig G. Two early infantile hereditary cases of progressive muscular atrophy simulating dystrophy, but on a neural basis. Arch Neurol 1971 Sep;25(3):276-8.

Hoffmann J. “Uber” chronische spinale Muskelatrophie im Kindesalter, auf familiärer Basis. [On chronic spinal muscular atrophy in childhood, with a familial basis]. Dtsch Z Nervenheilkd 1893(3):427-70. German.

Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin 2015 Nov;33(4):831-46.

Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am J Med Genet 2002 Jul 15;110(4):301-7.

Prior TW, Snyder PJ, Rink BD, Pearl DK, Pyatt RE, Mihal DC, et al. Newborn and carrier screening for spinal muscular atrophy. Am J Med Genet A 2010 Jul;152A(7):1608-16.

Munsat TL, Davies KE. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord 1992;2(5-6):423-8.

Spinal muscular atrophy [Internet] [Cited 23-Mar-2021]. Available from: www.medicalnewstoday.com.

Butchbach ME. Copy number variations in the survival motor neuron genes: implications for spinal muscular atrophy and other neurodegenerative diseases. Front Mol Biosci 2016 Mar 10;3:7.

Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 2015 Feb;51(2):157-67.

Main M, Kairon H, Mercuri E, Muntoni F. The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation. Eur J Paediatr Neurol 2003;7(4):155-9.

Krosschell KJ, Maczulski JA, Crawford TO, Scott C, Swoboda KJ. A modified Hammersmith functional motor scale for use in multi-center research on spinal muscular atrophy. Neuromuscul Disord 2006 Jul;16(7):417-26.

O'Hagen JM, Glanzman AM, McDermott MP, Ryan PA, Flickinger J, Quigley J, et al. An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients. Neuromuscul Disord 2007 Oct;17(9-10):693-7.

Glanzman AM, O'Hagen JM, McDermott MP, Martens WB, Flickinger J, Riley S, et al; Pediatric Neuromuscular Clinical Research Network for Spinal Muscular Atrophy (PNCR); Muscle Study Group (MSG). Validation of the Expanded Hammersmith Functional Motor Scale in spinal muscular atrophy type II and III. J Child Neurol 2011 Dec;26(12):1499-507.

Lorson CL, Rindt H, Shababi M. Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Genet 2010 Apr 15;19(R1):R111-8.

SPINRAZA- nusinersen injection, solution. DailyMed, 30 June 2020. [Internet][Accesed: 3-Nov-2020]. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=dd70cd5f-b0fc-4ba4-a5ea-89a34778bd94#:~:text=SPINRAZA%20is%20indicated%20for%20the,in%20pediatric%20and%20adult%20patients.

Specialist Pharmacy Service. Nusinersen, 2016. [Internet][Accesed: 3-Nov-2020]. Available at: https://www.sps.nhs.uk/medicines/nusinersen/.

Paton DM. Nusinersen: antisense oligonucleotide to increase SMN protein production in spinal muscular atrophy. Drugs Today (Barc) 2017 Jun;53(6):327-37.

Schellino R, Boido M, Borsello T, Vercelli A. Pharmacological c-Jun NH2-terminal kinase (JNK) pathway inhibition reduces severity of spinal muscular atrophy disease in mice. Front Mol Neurosci 2018 Sep 4;11:308.

Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016 Mar 8;86(10):890-7.

Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016 Dec 17;388(10063):3017-26.

The U.S. Food and Drug Administration. FDA approves oral treatment for spinal muscular atrophy, 7 August 2020. [Internet][Accesed: 3-Nov-2020]. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-oral-treatment-spinal-muscular-atrophy.

Sturm S, Günther A, Jaber B, Jordan P, Al Kotbi N, Parkar N, et al. A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol 2019 Jan;85(1):181-93.

Baranello G, Servais L, Day JW, Deconinck N, Mercuri E, Klein A, et al. FIREFISH part 1: 1-year results on motor function in babies with type 1 SMA. Neurology 2019 Apr;92(15):S25.003.

Mercuri E, Barisic N, Boespflug-Tanguy O, Deconinck N, Kostera-Pruszczyk A, Masson R, et al. SUNFISH Part 2: Efficacy and safety of risdiplam (RG7916) in patients with Type 2 or non-ambulant Type 3 spinal muscular atrophy (SMA). Neurology 2020 Apr;94(15):1260.

Le TT, McGovern VL, Alwine IE, Wang X, Massoni-Laporte A, Rich MM, et al. Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 2011 Sep 15;20(18):3578-91.

Day JD, Chiriboga CA, Crawford TO, Darras BT, Finkel RS, Connolly AM, et al. Onasemnogene Abeparvovec-xioi gene-replacement therapy for spinal muscular atrophy type 1 (SMA1): Phase 3 US study (STR1VE) Update. Neurology 2020 Apr;94(15):1828.

Hwee DT, Kennedy A, Ryans J, Russell AJ, Jia Z, Hinken AC, et al. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93A ALS mouse model. PLoS One 2014 May 7;9(5):e96921.

Feng Z, Ling KK, Zhao X, Zhou C, Karp G, Welch EM, et al. Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. Hum Mol Genet 2016 Mar 1;25(5):964-75.

Tsai LK, Tsai MS, Ting CH, Li H. Multiple therapeutic effects of valproic acid in spinal muscular atrophy model mice. J Mol Med 2008;86:1243–54.

Swoboda KJ, Scott CB, Crawford TO, Simard LR, Reyna SP, Krosschell KJ, et al; Project Cure Spinal Muscular Atrophy Investigators Network. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS One 2010 Aug 19;5(8):e12140.

Piras A, Boido M. Autophagy inhibition: a new therapeutic target in spinal muscular atrophy. Neural Regen Res 2018 May;13(5):813-4.

Oliván S, Calvo AC, Rando A, Herrando-Grabulosa M, Manzano R, Zaragoza P, et al. Neuroprotective effect of non-viral gene therapy treatment based on tetanus toxin C-fragment in a severe mouse model of spinal muscular atrophy. Front Mol Neurosci 2016 Aug 24;9:76.

Parker GC, Li X, Anguelov RA, Toth G, Cristescu A, Acsadi G. Survival motor neuron protein regulates apoptosis in an in vitro model of spinal muscular atrophy. Neurotox Res 2008 Jan;13(1):39-48.

Genabai NK, Ahmad S, Zhang Z, Jiang X, Gabaldon CA, Gangwani L. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy. Hum Mol Genet 2015 Dec 15;24(24):6986-7004.

Published
2021/06/29
Section
Current topic