The venous contribution to cardiovascular performance: from systemic veins to left ventricular function - a review

  • Tonino Bombardini Past Associate Biomedicine Department, CNR, Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
Keywords: Venous return, Ventricular function, Central venous pressure, Mean systemic pressure

Abstract


The venous system contains ≈ 70 % of the total blood volume and is responsible in heart failure for key symptoms of congestion. It is active: it can increase or relax its tone with physiologic or pharmacologic stimuli. It is heterogeneous, behaves as a two-compartment model, compliant (splanchnic veins) and noncompliant (nonsplanchnic veins). It is dynamic in health and disease: in heart failure the vascular capacitance (storage space) is decreased and can result in volume redistribution from the abdominal compartment to the thoracic compartment (heart and lungs), which increases pulmonary pressures and precipitates pulmonary congestion. A noninvasive assessment of venous function, at rest and dynamically during stress, is warranted. The systemic haemodynamic congestion is assessed with inferior vena cava diameter and collapsibility. The pulmonary congestion is assessed with B-lines and pleural effusion. The contribution of left ventricular filling is assessed with end-diastolic volume, integrated with left ventricular function.

References

1. Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock—Part I: Physiology.
Crit Care Med 2013;41:255-62.
2. Jansen JR, Maas JJ, Pinsky MR. Bedside assessment of mean systemic filling pressure. Curr Opin Crit Care
2010;16:231–6.
3. Bayliss WM, Starling EH. Observations on venous pressures and their relationship. J Physiol 1894;16(3-
4):159-318.
4. Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL. Hemorrhagic shock. Curr Probl
Surg 1995;32:925–1002.

5. Lindsey AW, Banahan BF, Cannon RH, Guyton AC. Pulmonary blood volume of the dog and its changes in
acute heart failure. Am J Physiol 1957;190(1):45–8.
6. Magder S. Volume and its relationship to cardiac output and venous return. Crit Care 2016;20:271. doi:
10.1186/s13054-016-1438-7.
7. Gelman S. Venous function and central venous pressure. A physiologic story. Anesthesiology 2008;108:735–48.
8. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves.
Physiol Rev 1955;35:123–9.
9. Magder S, Scharf SM. Venous return. In: Scharf SM, Pinsky MR, Magder S, eds. Respiratory-circulatory interactions in health and disease. New York: Marcel Dekker; 2001. p. 93–112.
10. Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. 2nd edition.
Philadelphia: WB Saunders; 1973. p. 205–20.
11. Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive end-expiratory pressure on the canine venous
return curve. Am Rev Respir Dis 1992;146:4–10.
12. Funk DJ, Jacobsohn E, Kumar A. Role of the venous return in critical illness and shock: part II-shock and mechanical ventilation. Crit Care Med 2013;41:573-9.
13. Fudim M, Hernandez AF, Felker GM. Role of volume redistribution in the congestion of heart failure. J Am
Heart Assoc 2017;6(8). pii: e006817. doi: 10.1161/JAHA.117.006817.
14. Bombardini T, Zagatina A, Ciampi Q, Arbucci R, Merlo PM, Haber DML, et al. On behalf of the Stress Echo
Study Group of the Italian Society of Cardiovascular Imaging. Hemodynapic heterogeneity of reduced cardiac
reserve unmasked by volumetric exercise echocardiography. J Clin Med 2021 Jun 29;10(13):2906. doi:10.3390/jcm10132906.
15. Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E. Force-frequency relationship in the
echocardiography laboratory: a noninvasive assessment of Bowditch treppe? J Am Soc Echocardiogr 2003
Jun;16(6):646-55.
16. Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, et al. Diastolic time - frequency
relation in the stress echo lab: filling timing and flow at different heart rates. Cardiovasc Ultrasound 2008 Apr
21;6:15. doi: 10.1186/1476-7120-6-41.
17. Bombardini T, Nevola E, Giorgetti A, Landi P, Picano E, Neglia D. Prognostic value of left-ventricular and
peripheral vascular performance in patients with dilated cardiomyopathy. J Nucl Cardiol 2008 May-Jun;15(3):353-62.
18. Fudim M, Jones WS, Boortz-Marx RL, Ganesh A, Green CL, Hernandez AF, et al. Splanchnic nerve block for
acute heart failure. Circulation 2018;138:951-3.
19. Magder S. An approach to hemodynamic monitoring: Guyton at the bedside. Crit Care 2012;16:236–43.
20. Guyton AC, Hall JE. Cardiac output, venous return, and their regulation. In: Schmitt W, Gruliow R, eds. Textbook of medical physiology. 10th edition. Philadelphia: W.B. Saunders Company; 2000. p. 210-22.
21. Beigel R, Cercek B, Luo H, Siegel RJ. Noninvasive evaluation of right atrial pressure. J Am Soc Echocardiogr
2013;26:1033–42.
22. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory
collapse of the inferior vena cava. Am J Cardiol 1990;66:493–6.
23. Natori H, Tamaki S, Kira S. Ultrasonographic evaluation of ventilator effect on inferior vena caval configuration. Am Rev Respir Dis 1979;120:421–7.
24. Ciozda W, Kedan I, Kehl DW, Zimmer, Khandwalla R, Kimchi A. The efficacy of sonographic measurement of
inferior vena cava diameter as an estimate of central venous pressure. Cardiovasc Ultrasound 2016;14:33.
https://doi.org/10.1186/s12947-016-0076-1.
25
. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al. Pulmonary artery occlusion pressure
and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response
to volume infusion in normal subjects. Crit Care Med 2004;32(3):691-9.
26. Marik P, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review
of the literature and the tale of seven mares. Chest 2008;134(1):172-8. 1351. 172-8.
27. Nanas S, Magder S. Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 1992;146:688–93.
28. Pinsky MR. Instantaneous venous return curves in an intact canine preparation. Appl Physiol Respir Environ
Exerc Physiol 1984;56(3):765-71. doi: 10.1152/jappl.1984.56.3.765.
29. Chaliki HP, Hurrell DG, Nishimura RA, Reinke RA, Appleton CP. Pulmonary venous pressure: relationship to
pulmonary artery, pulmonary wedge, and left atrial pressure in normal, lightly sedated dogs. Catheter Cardiovasc Interv 2002;56(3):432–8.
30. Peacock AJ, Lewis J, Rubin LJ. Pulmonary Circulation: Diseases and their treatment. London: Arnold; 2004.
31. Scali MC, Ciampi Q, Zagatina A, Cortigiani L, D'Andrea A, Borguezan-Daros C, et al. On behalf of the Stress Echo 2020 Study Group of the Italian Society of Echocardiography and Cardiovascular Imaging. Lung ultrasound
and pulmonary congestion during stress echocardiography. JACC Cardiovascular imaging, 2020, Jul 9:S1936-
878X(20)30410-1. doi: 10.1016/j.jcmg.2020.04.020.
32. Picano E, Scali MC, Ciampi Q, Lichtenstein D. Lung ultrasound for the cardiologist. JACC Imaging 2018;11(11):1692-705.
33. Scali MC, Zagatina A, Simova I, Zhuravskaya N, Ciampi Q, Paterni M, et al. on behalf of the Stress Echo 2020
study group of the Italian Society of Echocardiography and Cardiovascular Imaging (SIECVI). B-lines with
Lung Ultrasound: the optimal scan technique at rest and during stress. Ultrasound Med Biol 2017;43:2558-63.
34. Rivas-Lasarte M, Álvarez-García J, Fernández-Martínez J, Maestro A, López-López L, Solé-González E, et al. Lung ultrasound-guided treatment in ambulatory patients with heart failure: a randomized controlled
clinical trial (LUS-HF study). Eur J Heart Fail 2019;21(12):1605‐13.
35. Wayne L. Miller. Assessment and management of volume overload and congestion in chronic heart failure:
can measuring blood volume provide new insights? Kidney Dis (Basel) 2017;2(4):164–9.
36. Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985;71:994–1009.
37. Starling EH. The Linacre Lecture on the Law of the Heart. London: Longmans, Green, & Company; 1918.
38. Braunwald E. The control of ventricular function in man. Br Heart J 1965;27:1-16.
39. Bombardini T, Zagatina A, Ciampi Q, Cortigiani L, D’Andrea A, Daros C, et al. Feasibility and value of
two-dimensional volumetric stress echocardiography. Minerva Cardioangiol 2020 Jul 10. doi: 10.23736/0026-4725.20.05304-9.
40. Bombardini T, Cortigiani L, Ciampi Q, Ostojic MC, Kovacevic-Preradovic T, Picano E. The prognostic value of
stroke work/end-diastolic volume ratio during stress echocardiography. Acta Cardiol 2020 Apr 1:1-12. doi:
10.1080/00015385.2020.1746054.
41. Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med
1998;26:1061–4.
42. Galderisi M, Lancellotti P, Donal E, Cardim N, Edvardsen T, Habib G, et al. European multicentre validation study of the accuracy of E/e' ratio in estimating invasive left ventricular filling pressure: EURO-FILLING study. Eur Heart J Cardiovasc Imaging 2014 Jul;15(7):810-6. doi:10.1093/ehjci/jeu022.
43. Bombardini T, Mulieri LA, Salvadori S, Costantino MF, Scali MC, Marzilli M, et al. Pressure-volume relationship
in the stress-echocardiography laboratory: does (left ventricular end-diastolic) size matter? Rev Esp Cardiol (Engl Ed) 2017 Feb;70(2):96-104. doi:10.1016/j.rec.2016.04.047.
44. Bombardini T, Sicari R, Bianchini E, Picano E. Abnormal shortened diastolic time length at increasing heart
rates in patients with abnormal exercise-induced increase in pulmonary artery pressure. Cardiovasc Ultrasound
2011 Nov 21;9:36. doi: 10.1186/1476-7120-9-36.
45. Eyer KM. Venous Physiology: The overlooked key to syncope and the regulation of cardiac output. J
Cardiovasc Dis Diagn 2015;3:5 doi: 10.4172/2329-9517.1000223.
46. Dubach P, Myers J, Dziekan G, Goebbels U, Reinhart W, Muller P, et al. Effect of high intensity exercise training on central hemodynamic responses to exercise in men with reduced left ventricular function. J Am Coll Cardiol 1997;29(7):1591-8.
47. Picano E, Ciampi Q, Cortigiani L, Arruda-Olson AM, Borguezan-Daros C, de Castro E Silva Pretto JL, et al.
Stress Echo 2030: The Novel ABCDE-(FGLPR) Protocol to Define the Future of Imaging. J Clin Med 2021 Aug
17;10(16):3641. doi: 10.3390/jcm10163641.
48. Agricola E, Bombardini T, Oppizzi M, Margonato A, Pisani M, Melisurgo G, et al. Usefulness of latent left
ventricular dysfunction assessed by Bowditch Treppe to predict stress-induced pulmonary hypertension in
minimally symptomatic severe mitral regurgitation secondary to mitral valve prolapse. Am J Cardiol 2005
Feb 1;95(3):414-7.
49. Flamm SD, Taki J, Moore R, Lewis SF, Keech F, Maltais F, et al. Redistribution of regional and organ blood
volume and effect on cardiac function in relation to upright exercise intensity in healthy human subjects.
Circulation 1990;81(5):1550-9.
50. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O'Connor CM, Bull DA, et al. Ultrafiltration in decompensated
heart failure with cardiorenal syndrome. N Engl J Med 2012;367:2296–304.

Published
2021/12/31
Section
Review article