The The Evidence for a Role of Bacteria and Viruses in Cardiovascular Disease

  • Grant N Pierce University of Manitoba
  • Justin F Deniset University of Calgary
  • Craig T Resch University of Manitoba
  • Muntahi Mourin
  • Elena Dibrov
  • Pavel Dibrov
Keywords: bacteria, virus, cardiovascular disease

Abstract


Inflammation plays a critical role in atherosclerosis and cardiovascular disease. Bacteria and viruses are major causative agents of inflammation in the body which normally develops as a response to infection. It is a logical extention, therefore, to believe bacterial and viral infections may be involved in a variety of presentations of cardiovascular diseases. The purpose of this review is to describe the data and conclusions to date on the involvement of these infectious agents in the induction of cardiovascular disease. The review also discusses the various specific bacteria and viruses that have been implicated in cardiovascular disease and the mechanisms, if known, that these agents induce cardiovascular disease.

Author Biographies

Justin F Deniset, University of Calgary

Assistant Professor, Department of Cardiac Sciences, Libin Institue and Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 1N

Craig T Resch, University of Manitoba

Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB Canada

Muntahi Mourin

University of Manitoba

Elena Dibrov

Department of Physiology and pathophysiology, University of Manitoba, Winnipeg. MB Canada

Pavel Dibrov

Department of Microbiology, University of Manitoba, Winnipeg, MB Canada

References

Watari J, Chen N, Amenta PS, Fukui H, Oshima T, Tomita T, et al. Helicobacter pylori associated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J Gastroenterol. 2014 May 14;20(18):5461-73.

Cheung PKM, Pierce GN. The role of infectious agents in atherogenesis. In: Biochemistry of Atherosclerosis Ed by SK Cheema, Springer Publishing Co New York 2006;413-434.

Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Makela PH, et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1988;2(8618):983-6.

Dahlen GN, Boman J, Birgander LS, Lindblom B. Lp(a) lipoprotein, IgG, IgA and IgM antibodies to Chlamydia pneumoniae and HLA class II hgenotype in early coronary artery disease. Atheroclerosis 1995;114:165-74.

Hu H, Pierce GN, Zhong G. The atherogenic effects of Chlamydia are dependent upon serum cholesterol and specific to the Chlamydia pneumoniae species. J Clin Invest 1999;103:747-53.

Fong IW, Chiu B, Viira E, Jang D, Mahony JB. De novo induction of atherosclerosis by Chlamydia pneumoniae in a rabbit model. Infect Immun 1999;67:6048-55.

Liu L, Hu H, Ji H, Murdin AD, Pierce GN, Zhong G. Chlamydia pneumonia infection significantly exacerbates aortic atherosclerosis in an LDLR-/- mouse model within six months. Mol Cell Biochem 2000;215:123-8.

Deniset JF, Cheung PKM, Dibrov E, Lee K, Steigerwald S, Pierce GN. Chlamydophila pneumoniae infection leads to smooth muscle cell proliferation and thickening in the coronary artery without contributions from a host immune response. Am J Pathol 2010;176:1028-37.

Chahine MN, Deniset J, Dibrov E, Hirono S, Blackwood DP, Austria JA, et al. Oxidized LDL promotes the mitogenic actions of Chlamydia pneumoniae in vascular smooth muscle cells. Cardiovasc Res 2011;92:476-83.

Caligiuri G, Rottenberg M, Nicoletti A, Wigzell H and Hansson GK. Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation 2001;103(23):2834-8.

Aalto-Setala K, Laitinen K, Erkkila L, Leinonen M, Jauhiainen M, Ehnholm C, et al. Chlamydia pneumoniae does not increase atherosclerosis in the aortic root of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:578-84.

Sharma J, Niu Y, Ge J, Pierce GN and Zhong G. Heat-inactivated C. pneumoniae organisms are not atherogenic. Mol Cell Biochem 2004;260:147-52.

Mendall MA, Goggin PM, Molineaux N, Levy J, Toosy T, Strachan D, et al. Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J 1994;71:437-9.

Strachan DP, Mendall MA, Carrington D, Butland BK, Yarnell JW, Sweetnam PM, et al. Relation of Helicobacter pylori infection to 13-year mortality and incident ischemic heart disease in the Caerphilly prospective heart disease study. Circulation 1998:98:1286-90.

Sawayama Y, Ariyama I, Hamada M, Otaguro S, Machi T, Taira Y, et al. Association between chronic Helicobacter pylori infection and acute ischemic stroke: Fukuoka Harasanshin Atherosclerosis Trial (FHAT). Atherosclerosis 2005;178(2):303-9.

Sung JJ, Sanderson JE. Hyperhomocysteinaemia, Helicobacter pylori and coronary heart disease. Heart 1996;76(4):305-7.

Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000;71(10):1554-60.

Chiu B. Multiple infections in carotid atherosclerotic plaques. Am Heart J 1999;138:S534-S536.

Armitage GC. Periodontal infections and cardiovascular disease – how strong is the association? Oral Dis 2000;6:335-50.

Saikku P. Chlamydia pneumoniae in atherosclerosis. J Intern Med 2000;247:391-6.

Muhlestein, JB. Chlamydia pneumoniae-induced atherosclerosis in a rabbit model. J Infect Dis 2000;181(Suppl 3): S505-7.

Campbell, LA, Blessing E, Rosenfeld M, Lin TM, Kuo C. Mouse models of C. pneumoniae infection and atherosclerosis. J Infect Dis 2000;181(Suppl 3):S508-13.

Miyatake SI, Yukawa H, Toda H, Matsuoka N, Takahashi R, Hashimoto N. Inhibition of rat vascular smooth muscle cell proliferation in vitro and in vivo by recombinant replication-Competent herpes simplex virus. Stroke 1999;30: 2431-9.

Lin TM, Jiang MG, Eng HL, Shi GY, Lai LC, Huang BJ, et al. Experimental infection with bovine herpesvirus-4 enhances atherosclerotic process in rabbits. Lab Invest 2000;80(1):3-11.

Moazed TC, Campbell LA, Rosenfeld ME, Grayston JT, Kuo CC. Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. J Infect Dis 1999;180:238-41.

Zhou, YF, Yu ZX, Wanishsawad C, Shou M, Epstein SE. The immediate early gene products of human cytomegalovirus increase vascular smooth muscle cell migration, proliferation, and expression of PDGF beta-receptor. Biochem Biophys Res Commun 1999;1999;256: 608-13.

Hirono S, Dibrov E, Hurtado C, Kostenuk A, Ducas R, Pierce GN. Chlamydia pneumoniae stimulates proliferation of vascular smooth muscle cells through induction of endogenous heat shock protein 60. Circ Res 2003;93:710-6.

Tanaka K, Zou JP, Takeda K, Ferrans VJ, Sandford GR, Johnson TM, et al. Effects of human cytomegalovirus immediate-early proteins on p53-mediated apoptosis in coronary artery smooth muscle cells. Circulation 1999;99: 1656-9.

Deniset JF, Pierce GN. Heat shock proteins: Mediators of atherosclerotic development. Current Drug Targets 2015;16:816-26.

George J, Shoenfeld Y, Gilburd B, Afek A, Shaish A, Harats, D. Requisite role for interleukin-4 in the acceleration of fatty streaks induced by heat shock protein 65 or Mycobacterium tuberculosis. Circ Res 2000;86:1203-10.

Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA. Cutting edge: Heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol Res 2000;164:13-7.

Xu Q, Detrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G, et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 1992;12:789-99.

Laurila A, Bloigu A, Nayha S, Hassi J, Leinonen M, Saikku P. Association of Helicobacter pylori infection with elevated serum lipids. Atherosclerosis 1999;142: 207-10.

Kinjo K, Sato H, Sato H, Ohnishi Y, Hishida E, Nakatani D, et al. Joint effects of Chlamydia pneumonia infection and classic risk factors on risk of acute myocardial infarction. Am Heart J 2003;146:324-30.

Chirgwin K, Roblin PM, Hammerschlag MR. In vitro susceptibilities of Chlamydia pneumoniae (Chlamydia sp. strain TWAR)Antimicrob Agents Chemother 198933:1634-5.

Gieffers J, Solbach W, Maass M. In vitro susceptibilities of Chlamydia pneumoniae strains recovered from atheroscleotic coronary arteries. Antimicrob Agents Chemother 1998;42:2762-64.

Jackson LA, Smith NL, Heckbert SR, Grayston, JT, Siscovick DS, Psaty BM. Lack of association between first myocardial infarction and past use of erythromycin, tetracycline or doxycycline. Emerg Infect Dis 1999;5:281-4.

Meier CR, Derby LE, Jick SS, Vasilakis C, Jick H. Antibiotics and risk of subsequent first-time acute myocardial infarction. JAMA 1999;281:427-31.

Deniset JF, Pierce GN. Possibilities for therapeutic interventions in disrupting Chlamydophila pneumonia involvement in atherosclerosis. Fund Clin Pharmacol 2010;24:607-17.

Gupta S, Leatham EW, Carrington D, Mendall MA, Kaski JC, Camm AJ. Elevated Chlamydia pneumoniae antibiotics, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Ciculation 1997;96:404-7.

Gurfinkel E, Bozovich G, Beck E, Testa E, Livellara B, Mautner B. Treatment with the antibiotic roxithromycin I patients with actue non-Q-wave coronary syndromes. The final report of the ROXIS Study. Eur Heart J 1999;20;121-7.

Stone AF, Mendall MA, Kaski JC, Edger TM, Risley P, Poloniecki J, et al. Effect of treatment for Chlamydia pneumoniae and Helicobacter pylori on markers of inflammation and cardiac events in patients with actue coronary syndromes: South Thames Trial of Antibiotics in Myocardial Infaraction and Unstable Angina (STAMINA). Circulation 2002;106;1219-23.

Sinisalo J, Mattila K, Valtonen V, Anttonen O, Juvonen J, Merlin J, et al. Effect of 3 months of antimicrobial treatment with clarithromycin in actue non-q-wave coronary syndrome. Circulation 2002;105;1555-60.

Muhlestein JB, Anderson JL, Carlquist JF, Salunkhe K, Horne BD, Pearson, RR, et al. Randomized secondary prevention trial of azithromycin in patients with coronary artery disease: primary clinical results of the ACADEMIC study. Circulation 2000;102;1755-60.

O'Connor CM, Dunne MW, Pfeffer MA, Muhlestin JB, Yao L, Gupta S, et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 2003;290;1459-66.

Jespersen CM, Als-Nielsen B, Damgaard M, Hansen JF, Hansen S, Helo OH, et al. Randomized placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. BMJ 2006;332;22-7.

Grayston JT, Kronmal RA, Jacson LA, Parisi AF, Muhlestein JB, Cohen JD, et al. Azithromycin for the secondary prevention of coronary events. N Engl J Med 2005;352:1637-45.

Zahn R, Schneider S, Friling B, Seidl K, Tebbe U, Weber M, et al. Antibiotic therapy after actue myocardial infarction:a prospective randomized study. Circulation 2003;107:1253-9.

Cercek B, Shah PK, Noc M, Zaher D, Zeymer U, Matetzky S, et al. Effect of short-term treatment with azithromycin n recurrent ischaeic events in patients with actue coronary syndrome in the Azithromycin in Acute Coronary Syndrome (AZACSS) trial: a randomised controlled trial. Lancet 2003;361:809-13.

Cannon CP, Braundwald E, McCabe CH, Grayston JT, Muhlestein B, Giugliano RP, et al. Antibiotic treatment of Chlamydia pneumoniae after actue coronary syndrome. N Engl J Med 2005;352:1646-54.

Fong IW. Value of animal models for Chlamydia pneumoniae-related atherosclerosis. Am Heart J 1999;138:S512-513.

Kalayoglu MV, Hoerneman B, LaVerda D, Morrison SG, Morrison RP, Byrne GI. Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis 1999;180:780-90.

Tosi MF, Hammerschlag MR. Chlamydia trachomatis selectively stimulates myeloperoxidase release but not superoxide production by human neutrophils. J Infect Dis 1988;158:457-60.

Khovidhunkit W, Memon RA, Feingold KR, Grunfeld C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis 2000;181(Suppl 3):S462-72.

Kalayoglu M, Miranpuri GS, Golenbock DT, Byrne GI. Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae. Microbes Infect 1999;1:409-18.

Memon RA, Noor ISM, Holleran WM, Uchida Y, Moser AH, Feingold KR, et al. Infection and inflammation induce LDL oxidation in vivo. Arterioscler Thromb Vasc Biol 2000;20:1536-42.

Reaven PD, Witztum JL. Oxidized low density lipoproteins in atherogenesis: Role of dietary modification. Annu Rev Nutr 1996;16:51-71.

Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991;88:1785-92.

Berliner JA, Navab M, Fgelman AM, Frank JS, Demer LL, Edwards PA, et al. Atherosclerosis: Basic mechanisms oxidation, inflammation, and genetics. Circulation 1995;91:2488-96.

Wanishsawad C, Zhou YF, Epstein SE. Chlamydia pneumoniae-Induced transactivation of the major immediate early promoter of cytomegalavirus: Potential synergy of infectious agents in the pathogenesis of atherosclerosis. J Infect Dis 2000;181:787-90.

Siscovick DS, Schwartz SM, Corey L, Grayston JT, Ashley R, Wang SP, et al. Chlamydia pneumoniae, herpex simplex virus type 1 and cytomegalovirus and incident myocardial infarction and coronary heart disease death in older adults: the Cardiovascular Health Study. Circulation 2000;Nov 7;102(19):2335-40.

Ibrahim AI, Obeid M, Jouma MJ, Moasis GA, Al-Richane WL, Kindermann I, et al. Detection of herpes simplex virus, cytomegalovirus and Epstein-Barr virus DNA in atherosclerotic plaques in unaffected bypass grafts. J Clin Virol 2005; Jan;32(1):29-32.

Sorlie PD, Nieto FJ, Adam E, Folsom AR, Shahar E, Massing M. A prospective study of cytomegalovirus, herpes simplex virus 1 and coronary heart disease: the atherosclerosis risk in communities (ARIC) study. Arch Intern Med 2000;July 10;160(13):2027-32.

Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLos One 2011;Feb 17;6(2):e16103. doi: 10.1371/journal.pone.0016103.

Vilkuna-Rautiainen T, Pussinen, PJ, Roivainen,M, Petays T, Jousilahti P, Hovi T, et al. Serum antibody response to periodontal pathogens and herpes simplex virus in relation to classic risk factors of cardiovascular disease. Int J Epidemiol 2006;Dec;35(6):1486-94.

Armitage GC.Periodontal infections and cardiovascular disease-how strong is the association? Oral Dis 2000;Nov;6(6):335-50.

Dadashi M, Hajikhani B, Ghazi M, Yazdani S, Goudarzi M, Nasiri MJ, et al. The global prevalence of Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus and herpes simplex virus in patients with coronary artery disease: A systematic review and meta-analysis. Microb Pathog 2021;Mar;152:104572. doi: 10.1016/j.micpath.2020.104572.

Ridker PM, Hennekens CH, Buring JE, Kundsin R, Shih J. Baseline IgG antibody titers to Chlamydia pneumoniae, Helicobacter pylori, herpes simplex virus, and cytomegalovirus and the risk for cardiovascular disease in women. Ann Intern Med 1999;Oct(19);131(8):573-7.

Stockdale L, Nash S, Nalwoga A, Painter H, Asiki G, Fletcher H, et al. Human cytomegalovirus epidemiology and relatioship to tuberculosis and cardiovascular disease risk factors in a rural Ugandan cohort. PLos One 2018;Feb 6;13(2):e0192086. doi: 10.1371/journal.pone.0192086.

Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease:from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020;Sep:17(9):543-58.

Hussain A, Tang O, Sun C, Jia X, Selvin E, Nambi V, et al. Soluble angiotensin-converting enzyme 2, cardiac biomarkers, structure, and function, and cardiovascular events (from the atherosclerosis risk in communities study). Am J Cardiol 2021;146:15–21.

Narula S, Yusuf S, Chong M, Ramasundarahettige C, Rangarajan S, Bangdiwala SI, et al. Plasma ACE2 and risk of death or cardiometabolic diseases: A case-cohort analysis. Lancet 2020;396:968–76.

Zisman LS, Keller RS, Weaver B, Lin Q, Speth R, Bristow MR, Canver CC. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2. Circulation 2003;108(14):1707-12.

Magadum A, Kishore R. Cardiovascular manifestations of COVID-19 infection. Cells 2020;Nov 19;9(11):2508. doi: 10.3390/cells9112508.

Massaeli H, Austria JA, Pierce GN. Increase in nuclear calcium in smooth muscle cells exposed to oxidized low density lipoprotein. Free Radical Res 2001;34:9-16.

Puntmann VO, Carerj M L, Wieter I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus diease 2019 (COVID-19). JAMA Cardiol 2020;Nov 1;5(11):1265-73.

Ali MAM, Spinler SA. COVID-19 and thrombosis:from bench to bedside. Trends Cardiovasc Med 2021;31(3):143-60.

Bienvenu LA, Noonan J, Wang X, Peter K. Higher mortality of COVID-19 I males: sex differences in immune response and cardiovascular comorbidites. Cardiovasc Res 2020;Dec 1:116(14):2197-206.

Pierce GN, Resch C, Mourin M, Dibrov P, Dibrov E, Ravandi A. Bacteria and the growing threat of multidrug resistance for invasive cardiac interventions. Rev Cardiovasc Med 2022 Jan 14;23(1):15. doi: 10.31083/j.rcm2301015.

Published
2022/09/30
Section
Review article