Effect of Different Melatonin-Rich Extract of Emprit Ginger (Zingiber Officinale Var. Amarum) Doses on Biochemical Parameters in Streptozotocin-Induced Diabetic Rats

  • Yanuarita Tursinawati Universitas Muhammadiyah Semarang
  • Ali Rosidi Universitas Muhammadiyah Semarang
  • Nabil Hajar Universitas Muhammadiyah Semarang
  • Devita Diatri Universitas Muhammadiyah Semarang
  • Ika Dyah Kurniati Universitas Muhammadiyah Semarang
  • Dyfan Elian Rahmatullah Universitas Muhammadiyah Semarang
  • Morita Dascha Winny Cleodor Universitas Muhammadiyah Semarang
  • Pramayshera Erinda Ayuning Diaz Universitas Muhammadiyah Semarang
Keywords: Melatonin, Glucose, Zingiber officinale, Diabetes mellitus, Cholesterol, Triglycerides

Abstract


Background/Aim: Emprit ginger (Zingiber officinale var. amarum) is an Indonesian natural plant with various bioactivities, including antidiabetic properties. Several studies have shown that bioactivities can be attributed to the presence of flavonoids and also melatonin which playing a role in carbohydrate metabolism and blood sugar levels regulation. Ginger also has an effect on the lipid profile in studies in experimental animals. Therefore, this study aimed to determine the in vivo antidiabetic activity of melatonin-rich extract of Emprit ginger using blood sugar and lipid profiles parameters.

Methods: The study procedure comprised 30 male white rats of Wistar strain, which were divided into 5 groups. These included: I - K-: negative control; II - K+: injected with streptozotocin (STZ) - nicotinamide (NA); III - P1: given STZ-NA + 100 mg/kg body weight (BW)/day ginger extract; IV - P2: given STZ-NA + 200 mg/kg BW/day ginger extract; and V - P3: injected with STZ-NA + metformin 300 mg/kg BW/day. In addition, the treatment was carried out for a total of 21 days, followed by the measurement of random blood sugar (RBS) levels and lipid profiles.

Results: The highest pre-treatment RBS, triglyceride, cholesterol, HDL and LDL levels were 426.8 ± 55.8 mg/dL (P2), 142 ± 39.8 mg/dL (P2), 130.8 ± 21.7 mg/dL (K+), 53.4 ± 4.92 mg/dL (P1) and 61.67 ± 17.69 mg/dL (K+), respectively. The results showed that the largest decrease in RBS was obtained in P3 by 262.8 ± 70.6 mg/dL, while P2 experienced the highest decrease in triglyceride levels by 83.66 ± 52.04 mg/dL. In addition, the largest decrease in cholesterol was in P3 by 50.2 ± 26.30 mg/dL, with P1 possessing the highest reduction in HDL by 15.4 ± 15.88 mg/dL. In terms of LDL, the largest decrease was obtained in P3, 20.44 ± 16.68 mg/dL. Based on the results, changes in biochemical parameters levels between all groups showed significant differences except for HDL.

Conclusion: STZ-NA injection caused an increase in RBS and cholesterol in rats. Administration of melatonin-rich ginger extract led to a decrease in RBS, cholesterol and LDL and was more effective in the group given metformin. Melatonin-rich ginger extract at a dose of 200 mg/kg BW/day was more effective in reducing triglycerides compared to other clinical parameters.

References

Indonesian Ministry of Health. [Indonesian Health Profile 2019]. Vol. 8, Indonesian Ministry of Health. 2019. 1–58 p. Indonesian.

Provincial Health Office. Central Java. Central Java 2021. [Health Profile of Central Java Province 2021]. 2021; Indonesian.

Indonesia PE. [Guidelines for the Management and Prevention of Adult Type 2 Diabetes Mellitus in Indonesia 2021] [Internet]. Global Initiative for Asthma. 2021. Available from: www.ginasthma.org. [Cited: 1-Feb-2024].

An S, Nedumaran B, Koh H, Joo DJ, Lee H, Park CS, et al. Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway. Exp Mol Med. 2023;55(7):1556–69.doi: 10.1038/s12276-023-01040-x.

Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FAJL. Melatonin effects on glucose metabolism: time to unlock the controversy. Trends Endocrinol Metab. 2020 Mar;31(3):192-204. doi: 10.1016/j.tem.2019.11.011.

Salehi B, Sharopov F, Fokou PVT, Kobylinska A, de Jonge L, Tadio K, et al. Melatonin in medicinal and food plants: Occurrence, bioavailability, and health potential for humans. Cells. 2019;8(7):1–23. doi:10.3390/cells8070681.

Arnao MB. Phytomelatonin: discovery, content, and role in plants. Adv Bot. 2014;2014:1–11. doi: 10.1155/2014/815769.

Badria FA. Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J Med Food. 2002;5(3):153–7. doi: 10.1089/10966200260398189.

Uǧur Y. Extraction and quantification of melatonin in cornelian cherry (Cornus mas L.) by ultra-fast liquid chromatography coupled to fluorescence detector (UFLC-FD). Acta Chromatogr. 2023;35(3):219–26. doi: 10.1556/1326.2022.01052.

Patel R, Parmar N, Pramanik Palit S, Rathwa N, Ramachandran AV, Begum R. Diabetes mellitus and melatonin: Where are we? Biochimie. 2022 Nov;202:2-14. doi: 10.1016/j.biochi.2022.01.001.

Tursinawati Y, Kartikadewi A, Yuniastuti A, Susanti R. Association of rs10830963 MTNR1B and rs841853 SLC2A1 polymorphism with obesity on type 2 diabetes patients: an overview of melatonin receptor and transporter. Indones Biomed J. 2021;13(2):155–62. doi: 10.18585/inabj.v13i2.1488.

Uluişik D, Keskin E, Hatipoğlu D. Effects of melatonin on some antioxidant enzymes in streptozotocin-induced diabetic rats. TJSE. 2019;21(2):217–22. doi: 10.15314/tsed.560865.

Maqsood M, Bader Ul Ain H, Tufail T, Bibi S, Ahmad B, Imran S, et al. Evaluating the anti-diabetic effect of ginger powder in experimental rats 1. PBMJ. 2023;5(March):16–22. doi: 10.54393/pbmj.v5i3.333.

Nirvana SJ, Widiyani T, Budiharjo A. Antihypercholesterolemia activities of red ginger extract (Zingiber officinale Roxb. var rubrum) on Wistar rats. IOP Conf Ser: Mater Sci Eng. 2020. doi: 10.1088/1757-899X/858/1/012025.

Jiao W, Sang Y, Wang X, Wang S. Effects of 6-shogaol on glucose uptake and intestinal barrier integrity in caco-2 cells. Foods. 2023;12(3):1–11. doi: 10.3390/foods12030503.

Noipha K, Ninla-Aesong P. Antidiabetic activity of zingiber officinale roscoe rhizome extract: An in vitro study. HAYATI J Biosci. 2018;25(4):160–8. doi: 10.4308/hjb.25.4.160.

Hasan AEZ, Andrianto D, Rosyidah RA. The α-Glucosidase inhibition test from a combination of turmeric extract, black tea, and ginger. J Agroindustri Halal. 2022;8(1):137–46. doi: 10.30997/jah.v8i1.5608.

Fajarwati I, Solihin DD, Wresdiyati T, Batubara I. Self-recovery in diabetic Sprague Dawley rats induced by intraperitoneal alloxan and streptozotocin. Heliyon. 2023;9(5):e15533. doi: 10.1016/j.heliyon.2023.e15533.

Mahdi C, Citrawati P, Hendrawan VF. The effect of rice bran on triglyceride levels and histopatologic aorta in rat (Rattus norvegicus) of high cholesterol dietary model. IOP Conf Ser: Mater Sci Eng. 2020. doi: 10.1088/1757-899X/833/1/012022.

Abd El Malik A. Changes in lipid profile and heart tissues of Wistar rats induces by using monosodium glutamate as food additive. IJBP. 2019;4(1):1–5. doi: 10.23880/ijbp-16000147.

Rias YA, Sutikno E. The Relationship between body weight and glucose in diabetic rats. J Wiyata. 2017;4(1):72–7. doi: 10.56710/wiyata.v4i1.149.

Haines MS, Leong A, Porneala BC, Meigs JB, Miller KK. Association between muscle mass and diabetes prevalence independent of body fat distribution in adults under 50 years old. Nutr Diabetes. 2022;12(1):1–6. doi: 10.1038/s41387-022-00204-4.

Ibrahim RM, Abdelhafez HM, EL-Shamy SAEM, Eid FA, Mashaal A. Arabic gum ameliorates systemic modulation in Alloxan monohydrate-induced diabetic rats. Sci Rep [Internet]. 2023;13(1):1–11. Available from: https://doi.org/10.1038/s41598-023-31897-x. [Cited: 1-Feb-2024].

Solikhah TI, Solikhah GP. Effect of Muntingia calabura L. Leaf Extract on blood glucose levels and body weight of alloxan-induced diabetic mice. Pharmacogn J. 2021;13(6):1450–5. doi: 10.5530/PJ.2021.13.184.

Beaudry KM, Devries MC. Nutritional strategies to combat type 2 diabetes in aging adults: the importance of protein. Front Nutr. 2019;6(August):1–10. doi: 10.3389/fnut.2019.00138.

Zaccardi F, Dhalwani NN, Papamargaritis D, Webb DR, Murphy GJ, Davies MJ, et al. Nonlinear association of BMI with all-cause and cardiovascular mortality in type 2 diabetes mellitus: a systematic review and meta-analysis of 414,587 participants in prospective studies. Diabetologia [Internet]. 2017;60(2):240–8. Available from: http://dx.doi.org/10.1007/s00125-016-4162-6. [Cited: 1-Feb-2024].

Tung YT, Chiang PC, Chen YL, Chien YW. Effects of melatonin on lipid metabolism and circulating irisin in Sprague Dawley rats with diet-induced obesity. Molecules. 2020 Jul 22;25(15):3329. doi: 10.3390/molecules25153329.

Yan LJ. The nicotinamide/streptozotocin rodent model of type 2 diabetes: renal pathophysiology and redox imbalance features. Biomolecules. 2022;12(9):1225. doi: 10.3390/biom12091225.

Siddiqui BS, Hasan M, Mairaj F, Mehmood I, Hafizur RM, Hameed A, et al. Two new compounds from the aerial parts of Bergenia himalaica Boriss and their anti-hyperglycemic effect in streptozotocin-nicotinamide induced diabetic rats. J Ethnopharmacol. 2014;152(3):561–7. doi: 10.1016/j.jep.2014.02.002.

Fajarwati I, Solihin DD, Wresdiyati T, Batubara I. Administration of alloxan and streptozotocin in Sprague Dawley rats and the challenges in producing diabetes model. In: IOP Conf Ser: Earth Env Sci. 2023. p. 1–13.

Fitri LAFN, Hernawati T, Sari DD, Kusuma WI, Kunti S, Hadi H, et al. The effect of strobilanthes crispus on blood glucose levels and lipid profile of streptozotocin-induced diabetic rats. Open Access Maced J Med Sci. 2022;10(T8):35–40. doi: 10.3889/oamjms.2022.9468.

Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kaushik A, Kim KH, et al. Antidiabetic activity enhancement in streptozotocin + nicotinamide-induced diabetic rats through combinational polymeric nanoformulation. Int J Nanomedicine. 2019 Jun 12;14:4383-95. doi: 10.2147/IJN.S205319.

Moriyama K. Associations between the triglyceride to high-density lipoprotein cholesterol ratio and metabolic syndrome, insulin resistance, and lifestyle habits in healthy Japanese. Metab Syndr Relat Disord. 2020;18(5):260–6. doi: 10.1089/met.2019.0123.

Augustine J, Troendle EP, Barabas P, McAleese CA, Friedel T, Stitt AW, et al. The role of lipoxidation in the pathogenesis of diabetic retinopathy. Front Endocrinol (Lausanne). 2021 Feb 18;11:621938. doi: 10.3389/fendo.2020.621938.

LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev. 2021 Jan 28;42(1):77-96. doi: 10.1210/endrev/bnaa023.

Amelia KR, Mita N, Indriyanti N. [Effect of Metformin Interaction with Ginger Juice on Blood Glucose Levels and Organs of Diabetic Mice]. In: Proceeding of Mulawarman Pharmaceuticals Conferences. 2019. p. 38–43. Indonesian.

Nam YH, Hong BN, Rodriguez I, Park MS, Jeong SY, Lee YG, et al. Steamed ginger may enhance insulin secretion through Katp channel closure in pancreatic β-cells potentially by increasing 1-dehydro-6-gingerdione content. Nutrients. 2020;12(2):1–15. doi: 10.3390/nu12020324.

Yan Y, Shi Q, Gong B. Review of melatonin in horticultural crops. In: Melatonin. London, UK: IntechOpen. 2020;1–23. doi:10.5772/intechopen.90935.

Kuo CS, Chen CY, Huang HL, Tsai HY, Chou RH, Wei JH, et al. Melatonin improves ischemia-induced circulation recovery impairment in mice with streptozotocin-induced diabetes by improving the endothelial progenitor cells functioning. Int J Mol Sci. 2022 Aug 30;23(17):9839. doi: 10.3390/ijms23179839.

Bekkouch O, Harnafi M, Touiss I, Khatib S, Harnafi H, Alem C, et al. In vitro antioxidant and in vivo lipid-lowering properties of zingiber officinale crude aqueous extract and methanolic fraction: a follow-up study. Evid Based Complement Alternat Med. 2019 Jul 9;2019:9734390. doi: 10.1155/2019/9734390.

Murad S, Niaz K, Aslam H. Effects of ginger on LDL-C, total cholesterol and body weight. Clin Med Biochem. 2018;04(02):8–11.

Geng X, Liu H, Yuwen Q, Wang J, Zhang S, Zhang X, et al. Protective effects of zingerone on high cholesterol diet-induced atherosclerosis through lipid regulatory signaling pathway. Hum Exp Toxicol. 2021;40(10):1732–45. doi: 10.1177/09603271211006170.

Kim JS, Jung YH, Lee HJ, Chae CW, Choi GE, Lim JR, et al. Melatonin activates ABCA1 via the BiP/NRF1 pathway to suppress high-cholesterol-induced apoptosis of mesenchymal stem cells. Stem Cell Res Ther. 2021;12(1):114. doi: 10.1186/s13287-021-02181-4.

Mi Y, Tan D, He Y, Zhou X, Zhou Q, Ji S. Melatonin modulates lipid metabolism in hepG2 cells cultured in high concentrations of oleic acid: AMPK pathway activation may play an important role. Cell Biochem Biophys. 2018 Dec;76(4):463-40. doi: 10.1007/s12013-018-0859-0.

Brahma Naidu P, Uddandrao VV, Ravindar Naik R, Suresh P, Meriga B, Begum MS, et al. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol Cell Endocrinol. 2016 Jan 5;419:139-47. doi: 10.1016/j.mce.2015.10.007.

Hadjzadeh MAR, Alikhani V, Hosseinian S, Zarei B, Keshavarzi Z. The effect of melatonin against gastric oxidative stress and dyslipidemia in streptozotocin-induced diabetic rats. Acta Endocrinol. 2018;14(4):453–8. doi: 10.4183/AEB.2018.453.

Adeniyi PO, Sanusi RA, Obatolu VA. Effect of raw and cooked ginger (Zingiber officinale roscoe) extracts on serum cholesterol and triglyceride in normal and diabetic rats. Biomed Biotechnol. 2018;6(1):8–14. doi: 10.12691/bb-6-1-2.

Li H, Rafie AR, Hamama A, Siddiqui RA. Immature ginger reduces triglyceride accumulation by downregulating Acyl CoA carboxylase and phosphoenolpyruvate carboxykinase-1 genes in 3T3-L1 adipocytes. Food Nutr Res. 2023;67(January 2023):1–18. doi: 10.29219/fnr.v67.9126.

Published
2024/08/22
Section
Original article