Harnessing Genomic and Bioinformatic Data to Broaden Understanding of Leukaemia Across Continents

  • Gugun Gumelar Universitas Ahmad Dahlan
  • Mia Maria Ulfa Universitas Ahmad Dahlan
  • Danang Prasetyaning Amukti universitas ahmad dahlan
  • Lalu Muhammad Irham Universitas Ahmad Dahlan
  • Sapto Yuliani Universitas Ahmad Dahlan
  • Wirawan Adikusuma Department of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
  • Sabiah Khairi Taipei Medical University
  • Darmawi Darmawi Universitas Riau
  • Rockie Chong University of California
  • Ilker Ates Ankara University
  • Dilpreet Singh Chandigarh University
  • Aditya Ashok Chavan California State University
Keywords: Leukaemia, Genome-wide association study, Polymorphism, single nucleotide, Genes, PATJ, MINDY1, ABCC8, CDKN1B

Abstract


Background/Aim: Leukaemia is a malignant disease of blood cells found in the bone marrow, which can be divided into acute lymphocytic leukaemia and myelocytic leukaemia. Current management of acute leukaemia still uses chemo therapy as the main therapy but has many side effects, therefore a new approach is needed to identify genetic factors involved in leukaemia. The aim of this study was to investigate gene variations that have potential pathogenic properties in leukaemia.

Methods: This study used genome-wide association study (GWAS) data obtained from the National Human Genome Research Institute (NHGRI) to search for genomic variants associated with leukaemia. The data was then screened using SNPnexus to detect potentially protein-damaging variants. Furthermore, the gene expression of these variants was analysed using the GTEx portal.

Results: Of the 2115 genomic variants found, four were deleterious, namely rs12140153, rs140386498, rs757110 and rs2066827, representing four different genes, namely PATJ, MINDY1, ABCC8 and CDKN1B. The allele frequency distribution of the variants showed variation between continents, with rs757110 and rs2066827 having different and higher expression than rs12140153 and rs140386498. Gene expression of the variants also varied between tissues, with rs757110 and rs2066827 having higher expression than rs12140153 and rs140386498.

Conclusion: This study successfully identified four genomic variants associated with leukaemia and showed differences in gene distribution and expression between populations and tissues. These findings may provide new insights into the molecular mechanisms and risk factors of leukaemia.

References

Guimaraes DM, Nascimento LS, Pedrinha VF, Pereira GG, Paradela CR, Pontes FS, et al. Avascular necrosis of the jaws as initial presentation of acute leukemia. Quintessence Int. 2016;47(9):791-6. doi: 10.3290/j.qi.a36564.

Mahmood K, Ubaid M, Taliya Rizvi S. Multiple osteolytic lesions causing hypercalcemia: a rare presentation of acute lymphoblastic leukemia. Case Rep Med. 2017;2017:2347810. doi: 10.1155/2017/2347810.

Marques B, Afonso C, Cortesão E. [Venetoclax: A New Hope for Elderly Patients with Acute Myeloid Leukemia]. Acta Med Port. 2023 Jan 2;36(1):59-62. Portuguese. doi: 10.20344/amp.17770.

Tomizawa D. Evolution and optimization of therapies for acute lymphoblastic leukemia in infants. Int J Hematol. 2023 Feb;117(2):162-72. doi: 10.1007/s12185-022-03502-w.

Jin A, Feng J, Wei G, Wu W, Yang L, Xu H, et al. CD19/CD22 chimeric antigen receptor T-cell therapy for refractory acute B-cell lymphoblastic leukemia with FLT3-ITD mutations. Bone Marrow Transplant. 2020 Apr;55(4):717-21. doi: 10.1038/s41409-020-0807-7.

Kemmoku E, Kawamura T, Ogata H, Saito K, Izumi T, Takano K, et al. [Isolated central nervous system relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia during ponatinib maintenance therapy]. Rinsho Ketsueki. 2022;63(12):1653-6. Japanese. doi: 10.11406/rinketsu.63.1653.

Yang WY, Guo Y, Chen XJ, Liu LP, Liu TF, Liu F, et al. [Association of cerebrospinal fluid status with prognosis in children with acute lymphoblastic leukemia]. Zhongguo Dang Dai Er Ke Za Zhi. 2020 Apr;22(4):350-4. Chinese. doi: 10.7499/j.issn.1008-8830.1910157.

Salari N, Rasoulpoor S, Valipour E, Mansouri K, Bartina Y, Dokaneheifard S, et al. Liposomes, new carriers for delivery of genes and anticancer drugs: a systematic review. Anticancer Drugs. 2022 Jan 1;33(1):e9-e20. doi: 10.1097/CAD.0000000000001144.

Smith RA, Andrews K, Brooks D, DeSantis CE, Fedewa SA, Lortet-Tieulent J, et al. Cancer screening in the United States, 2016: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. 2016 Mar-Apr;66(2):96-114. doi: 10.3322/caac.21336.

Wahyuningsih R, Adawiyah R, Sjam R, Prihartono J, Ayu Tri Wulandari E, et al. Serious fungal disease incidence and prevalence in Indonesia. Mycoses. 2021 Oct;64(10):1203-12. doi: 10.1111/myc.13304.

Rajkumar NN, Vijay RH. Immunological subtypes of acute lymphoblastic leukemia- beyond morphology: experience from Kidwai state cancer institute, Bengaluru, India. J Assoc Physicians India. 2017 Jul;65(7):14-7. PMID: 28792162.

Hynst J, Plevova K, Radova L, Bystry V, Pal K, Pospisilova S. Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants. PeerJ. 2019 Jun 12;7:e7071. doi: 10.7717/peerj.7071.

Adikusuma W, Zakaria ZA, Irham LM, Nopitasari BL, Pradiningsih A, Firdayani F, et al. Transcriptomics-driven drug repositioning for the treatment of diabetic foot ulcer. Sci Rep. 2023 Jun 20;13(1):10032. doi: 10.1038/s41598-023-37120-1.

Zhong Z, Li G, Xu Z, Zeng H, Teng J, Feng X, et al. Evaluating three strategies of genome-wide association analysis for integrating data from multiple populations. Anim Genet. 2024 Apr;55(2):265-76. doi: 10.1111/age.13394.

Le Ribeuz H, Masson B, Capuano V, Dutheil M, Gooroochurn H, Boët A, et al. SUR1 as a new therapeutic target for pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2022 May;66(5):539-54. doi: 10.1165/rcmb.2021-0180OC.

Guo D, Liu H, Gao G, Ruzi A, Wang K, Wu H, et al. Generation of an Abcc8 heterozygous mutation human embryonic stem cell line using CRISPR/Cas9. Stem Cell Res. 2016 Nov;17(3):670-2. doi: 10.1016/j.scr.2016.11.014.

Zhou X, Xu C, Zou Z, Shen X, Xie T, Zhang R, et al. The characteristics of glucose metabolism in the sulfonylurea receptor 1 knockout rat model. Mol Med. 2019 Jan 7;25(1):2. doi: 10.1186/s10020-018-0067-9.

Maxwell JE, Sherman SK, Li G, Choi AB, Bellizzi AM, O’Dorisio TM, et al. Somatic alterations of CDKN1B are associated with small bowel neuroendocrine tumors. Cancer Genet. 2015 Sep 15:S2210-7762(15)00184-2. doi: 10.1016/j.cancergen.2015.08.003.

Peng M, Wang J, Tian Z, Zhang D, Jin H, Liu C, et al. Autophagy-mediated Mir6981 degradation exhibits CDKN1B promotion of PHLPP1 protein translation. Autophagy. 2019 Sep;15(9):1523-38. doi: 10.1080/15548627.2019.1586254.

Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer. 2017 Oct;24(10):T195-T208. doi: 10.1530/ERC-17-0243.

De Marco C, Rinaldo N, De Vita F, Forzati F, Caira E, Iovane V, et al. The T197A Knock-in Model of Cdkn1b Gene to Study the Effects of p27 Restoration In Vivo. Mol Cancer Ther. 2019 Feb;18(2):482-93. doi: 10.1158/1535-7163.MCT-18-0134.

Vasavan B, Das N, Kahnamouei P, Trombley C, Swan A. Skp2-Cyclin A Interaction Is Necessary for Mitotic Entry and Maintenance of Diploidy. J Mol Biol. 2024 Apr 15;436(8):168505. doi: 10.1016/j.jmb.2024.168505.

Tsabar M, Mason JM, Chan YL, Bishop DK, Haber JE. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA. Nucleic Acids Res. 2015 Aug 18;43(14):6902-18. doi: 10.1093/nar/gkv525.

James C, Zhao TY, Rahim A, Saxena P, Muthalif NA, Uemura T, et al. MINDY1 Is a downstream target of the polyamines and promotes embryonic stem cell self-renewal. Stem Cells. 2018 Aug;36(8):1170-8. doi: 10.1002/stem.2830.

Song X, Li W, Tian C, Ma X, Yang W, Zhou J. Study on the mechanism of liver cancer immune escape mediated by MINDY1 through regulation of PD-L1 ubiquitination level. Biomol Biomed. 2024 Aug 31. doi: 10.17305/bb.2024.10962.

Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, et al. MINDY-1 Is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell. 2016 Jul 7;63(1):146-55. doi: 10.1016/j.molcel.2016.05.009.

Abdul Rehman SA, Armstrong LA, Lange SM, Kristariyanto YA, Gräwert TW, Knebel A, et al. Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2. Mol Cell. 2021 Oct 21;81(20):4176-90.e6. doi: 10.1016/j.molcel.2021.08.024.

Giaimo BD, Gagliani EK, Kovall RA, Borggrefe T. Transcription factor RBPJ as a molecular switch in regulating the notch response. Adv Exp Med Biol. 2021;1287:9-30. doi: 10.1007/978-3-030-55031-8_2.

Yu M, Jiang X, Cai W, Yang X, An W, Zhang M, et al. PATJ and MPDZ are required for trophectoderm lineage specification in early mouse embryos. Reproduction. 2023 Jul 7;166(2):175-85. doi: 10.1530/REP-22-0429.

Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, et al. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci. 2023 Oct 25;80(11):333. doi: 10.1007/s00018-023-04994-3.

Tan B, Yatim SMJM, Peng S, Gunaratne J, Hunziker W, Ludwig A. The mammalian crumbs complex defines a distinct polarity domain apical of epithelial tight junctions. Curr Biol. 2020 Jul 20;30(14):2791-804.e6. doi: 10.1016/j.cub.2020.05.032.

Li P, Lan P, Liu S, Wang Y, Liu P. Cell polarity protein Pals1-associated tight junction expression is a favorable prognostic marker in clear cell renal cell carcinoma. Front Genet. 2020 Aug 28;11:931. doi: 10.3389/fgene.2020.00931.

Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, et al. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci. 2023 Oct 25;80(11):333. doi: 10.1007/s00018-023-04994-3.

Published
2024/12/26
Section
Original article