Nanoparticle-Based Drug Delivery Systems: A Promising Approach for Targeted Ulcerative Colitis Therapy
Abstract
Inflammatory bowel disease (IBD), includes ulcerative colitis (UC) and Crohn's disease (CD), is characterised by recurrent, chronic inflammation of the gastrointestinal system. For the treatment of UC, oral medication delivery to the colon is largely favoured since it increases their effectiveness while lowering systemic toxicity. To deliver oral a medication to the colon, which is at the distal end of the gastrointestinal system is however challenging, because of physiological difficulties, biochemical barriers and environmental obstacles, such as those brought on by mucus and epithelium. Recent preclinical studies have suggested that targeted medication administration to the colon using nanoparticle-based drug delivery systems (DDS) may be a promising strategy for the treatment of UC. Additionally, this study offers a thorough assessment of newly discovered naturally produced nanoparticles (such as extracellular vesicles and plant-derived nanoparticles) as well as DDS based on synthetic nanoparticles. These innovative UC treatment plans based on nanoparticles may present a chance for the clinical application of nanoparticle formulae.
References
Neurath MF. Cytokines in inflammatory bowel disease. Nature Rev Immunol. 2014;14(5):329-42. doi: 10.1038/nri3661.
Baumgart DC, Sandborn W J Crohn's disease. Lancet. 2012;380(9853):1590-605. doi: 10.1016/s0140-6736(12)60026-9.
Calafat M, Lobatón T, Hernandez-Gallego A, Mañosa M, Torres P, Canete F, et al. Acute histological inflammatory activity is associated with clinical relapse in patients with ulcerative colitis in clinical and endoscopic remission. Dig Liver Dis. 2017;49(12):1327-31. doi: 10.1016/ Jdld.2017.08.041.
Bilsborough J, Targan SR, Snapper SB. Therapeutic targets in inflammatory bowel disease: current and future. Am J Gastroenterol Suppl. 2016; 3(3):27. doi: 10.1038/ajgsup.2016.18.
Neurath MF. Current and emerging therapeutic targets for IBD. Nature Rev Gastroenterol Hepatol. 2017;14(5):269-78. doi: 10.1038/nrgastro.2016.208.
Arora Z, Shen B. Biological therapy for ulcerative colitis. Gastroenterol Rep. 2015;3(2):103-9. doi: 10.1093/gastro/gou070.
Dretzke J, Edlin R, Round J, Connock M, Hulme C, Czeczot J, et al. A systematic review and economic evaluation of the use of tumour necrosis factor-alpha (TNF-α) inhibitors, adalimumab and infliximab, for Crohn's disease. Health Technol Assess (Winchester, England). 2011;15(6):1. doi: 10.3310/hta15060.
Nielsen OH. New strategies for treatment of inflammatory bowel disease. Front Med. 2014;1(3):1-5. doi: 10.3389/fmed.2014.00003.
Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, et al. Infliximab, azathioprine, or combination therapy for Crohn's disease. N Engl J Med. 2010;362(15):1383-95. doi: 10.1056/NEJMoa0904492.
Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699-710. doi: 10.1056/NEJMoa1215734.
Colombel JF, Rutgeerts PJ, Sandborn WJ, Yang M, Camez A, Pollack PF, et al. Adalimumab induces deep remission in patients with Crohn's disease. Clin Gastroenterol Hepatol. 2014;12(3):414-22. doi: 10.1016/ Jcgh.2013.06.019.
Tomalia DA, Khanna SN. A systematic framework and nanoperiodic concept for unifying nanoscience: Hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns and predictive Mendeleev-like nanoperiodic tables. Chem Rev. 2016;116(4):2705-74. doi: 10.1021/acs.chemrev.5b00367.
Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, et al. Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol. 2011;300(3):G371-83. doi: 10.1152/ajpgi.00466.2010.
Viscido A, Capannolo A, Latella G, Caprilli R, Frieri G. Nanotechnology in the treatment of inflammatory bowel diseases. J Crohn's Colitis. 2014;8(9):90318. doi: 10.1016/ Jcrohns.2014.02.024.
Zhang MZ, Yu Y, Yu RN, Wan M, Zhang RY, Zhao YD. Tracking the down‐regulation of folate receptor‐α in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide. Small. 2013;9(24):4183-93. doi: 10.1002/smll.201300994.
Zhang M, Xu C, Wen L, Han MK, Xiao B, Zhou J, et al. A hyaluronidase-responsive nanoparticle-based drug delivery system for targeting colon cancer cells. Cancer Res.2016; 76(24):7208-18. doi: 10.1158/0008-5472.CAN-16-1681.
Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater.2016; 15(9):1037-46. doi: 10.1038/nmat4644.
Collnot EM, Ali H, Lehr CM. Nano-and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Controlled Release. 2012;161(2):235-46. doi: 10.1016/ Jjconrel.2012.01.028.
Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50:S41-67. doi: 10.1016/S0169-409X(01)00151-6.
Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2(4):289-95. doi: 10.1038/nrd1067.
Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 2010; 25(2):79. doi: 10.5001/om J2010.24.
Xiao B, Merlin D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv. 2012;9(11):1393-407. doi: 10.1517/17425247.2012.719061.
Liu M, Zhang J, Shan W, Huang Y. Developments of mucus penetrating nanoparticles. Asian J Pharm Sci. 2015;10(4):275-82. doi: 10.1016/ Jajps.2014.12.007.
Yang M, Lai SK, Yu T, Wang YY, Happe C, Zhong W, et al. Nanoparticle penetration of human cervicovaginal mucus: The effect of polyvinyl alcohol. J Controlled Release. 2014;192:202-8. doi: 10.1016/ Jjconrel.2014.07.045.
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256-76. doi: 10.1016/ Jaddr.2016.07.007.
Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target? Nature Rev Gastroenterol Hepatol. 2017;14(1):9-21. doi: 10.1038/nrgastro.2016.169.
des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Controlled Release. 2006;116(1):1-27. doi: 10.1016/ Jjconrel.2006.08.013.
González-Mariscal L, Nava P, Hernandez S. Critical role of tight junctions in drug delivery across epithelial and endothelial cell layers. J Membr Biol. 2005;207:55-68. doi: 10.1007/s00232-005-0807-y.
Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv. 2004;1(1):141-63. doi: 10.1517/17425247.1.1.141.
Cuvelier CA, Quatacker J, Mielants H, Vos MD, Veys E, Roels HJ. M‐cells are damaged and increased in number in inflamed human ileal mucosa. Histopathology. 1994; 24(5):417-26. doi: 10.1111/ J1365-2559.1994.tb00550.x.
Florence AT. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Targeting. 2004;12(2):65-70. doi: 10.1080/10611860410001693706.
Johnstone RW, Ruefli AA, Smyth M J Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem Sci. 2000;25(1):1-6. doi: 10.1016/S0968-0004(99)01493-0.
Gavhane YN, Yadav AV. Loss of orally administered drugs in GI tract. Saudi Pharm J. 2012;20(4):331-44. doi: 10.1016/ Jjsps.2012.06.001.
Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:DTI-S12519. doi: 10.4137/DTI.S12519.
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262-7. doi: 10.1126/science.1223813.
Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18(8):851-60. doi: 10.1038/ni.3780.
Williams BA, Grant LJ, Gidley MJ, Mikkelsen D. Gut fermentation of dietary fibres: physico-chemistry of plant cell walls and implications for health. Int J Mol Sci. 2017;18(10):2203. doi: 10.3390/ijms18102203.
Zhang L, Sang Y, Feng J, Li Z, Zhao A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J Drug Targeting. 2016;24(7):579-89. doi: 10.3109/1061186X.2016.1141840.
Qiao H, Fang D, Chen J, Sun Y, Kang C, Di L, et al. Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Deliv. 2017;24(1):233-42. doi: 10.1080/10717544.2016.1245367.
Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA. 2017;114(18):4775-80. doi: 10.1073/pnas.1701819114.
Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11(5):1117-32. doi: 10.1016/ Jnano.2015.02.018.
Wang K, Shen R, Meng T, Hu F, Yuan H. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer. Molecules. 2022;27(9):2981. doi: 10.3390/molecules27092981.
Liu L, Yao W, Rao Y, Lu X, Gao J. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv. 2017;24(1):569-81. doi: 10.1080/10717544.2017.1279238.
Gugulothu D, Kulkarni A, Patravale V, Dandekar P. pH-sensitive nanoparticles of curcumin–celecoxib combination: evaluating drug synergy in ulcerative colitis model. J Pharm Sci. 2014; 103(2):687-96. doi: 10.1002/jps.23828.
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today. 2021:1(37):1010-92. doi: 10.1016/ Jnantod.2021.101092.
Bai XY, Yan Y, Wang L, Zhao LG, Wang K. Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice. Drug Deliv. 2016; 23(6):1926-32. doi: 10.3109/10717544.2014.996924.
Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm. 2014;473(1-2):203-12. doi: 10.1016/ Jijpharm.2014.07.009.
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid nanoparticles for drug delivery. Adv Nano Biomed Res. 2022;2(2):2100109. doi: 10.1002/anbr.202100109.
Makhlof A, Tozuka Y, Takeuchi H. pH-Sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72(1):1-8. doi: 10.1016/ Jejpb.2008.12.013.
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. doi: 10.3390/molecules25092193.
Barea MJ, Jenkins MJ, Gaber MH, Bridson RH. Evaluation of liposomes coated with a pH responsive polymer. Int J Pharm. 2010;402(1-2):89-94. doi: 10.1016/ Jijpharm.2010.09.028.
Nguyen CT, Webb RI, Lambert LK, Strounina E, Lee EC, Parat MO, et al. Bifunctional succinylated ε-polylysine-coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon. ACS Appl Mater Interfaces. 2017;9(11):9470-83. doi: 10.1021/acsami.7b00411.
Talaei F, Atyabi F, Azhdarzadeh M, Dinarvand R, Saadatzadeh A. Overcoming therapeutic obstacles in inflammatory bowel diseases: a comprehensive review on novel drug delivery strategies. Eur J Pharm Sci. 2013;49(4):712-22. doi: 10.1016/ Jejps.2013.04.031.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9-19. doi: 0.1097/WOA.0b013e31825f8a9e.
Piechota-Polanczyk A, Fichna J. The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg's Arch Pharmacol. 2014;387:605-20. doi: 10.1007/s00210-014-0985-1.
Simmonds NJ, Allen RE, Stevens TR, Niall R, Van Someren M, Blake DR, et al. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology. 1992; 103(1):186-96. doi: 10.1016/0016-5085(92)91112-H.
Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010; 9(11):923-8. doi: 10.1038/nmat2859.
Vong LB, Tomita T, Yoshitomi T, Matsui H, Nagasaki Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology. 2012; 143(4):1027-36. doi: 10.1053/ Jgastro.2012.06.043.
Siri JG, Fernando CA, De Silva SN. Nanotechnology and protection of intellectual property: emerging trends. Recent Pat Nanotechnol. 2020 Dec 1;14(4):307-27. doi: 10.2174/1872210514666200612174317.
Sharma VK, Agrawal MK. A historical perspective of liposomes-a bio nanomaterial. Mater Today Proc. 2021 Jan 1;45:2963-6. doi: 10.1016/ Jmatpr.2020.11.952.
Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery. Biomed Rep. 2021;14(5):1-9. doi: 10.3892/br.2021.1418.
Zhang Q, Tao H, Lin Y, Hu Y, An H, Zhang D, et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials. 2016;105:206-21. doi: 10.1016/ Jbiomaterials.2016.08.010.
Yusuf A, Almotairy AR, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers. 2023 Mar 23;15(7):1596. doi: 10.3390/polym15071596.
Abesekara MS, Chau Y. Recent advances in surface modification of micro-and nano-scale biomaterials with biological membranes and biomolecules. Front Bioeng Biotechnol. 2022;10:972790. doi: 10.3389/fbioe.2022.972790.
Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014;11(6):901-15. doi: 10.1517/17425247.2014.902047.
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016 Oct 18;1(12):1-7. doi: 10.1038/natrevmats.2016.71.
Oliva N, Conde J, Wang K, Artzi N. Designing hydrogels for on-demand therapy. Acc Chem Res. 2017;50(4):669-79. doi: 10.1021/acs.accounts.6b00536.
Laroui H, Dalmasso G, Nguyen HT, Yan Y, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology. 2010;138(3):843-53. doi: 10.1053/ Jgastro.2009.11.003.
Laroui H, Geem D, Xiao B, Viennois E, Rakhya P, Denning T, et al. Targeting intestinal inflammation with CD98 siRNA/PEI–loaded nanoparticles. Mol Ther. 2014;22(1):69-80. doi: 10.1038/mt.2013.214.
Xiao B, Laroui H, Viennois E, Ayyadurai S, Charania MA, Zhang Y, et al. Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice. Gastroenterology. 2014;146(5):1289-300. doi: 10.1053/ Jgastro.2014.01.056.
Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS Pharm Sci Tech. 2023;24(2):66. doi: 10.1208/s12249-023-02516-9.
Kumari S, Goyal A, Garg M. Box-Behnken design (BBD) based optimization of beta-carotene loaded cubosomes for anti-oxidant activity using DPPH assay. Bio Nano Science. 2023;13(2):466-80. doi: 10.1007/s12668-023-01089-y.
López KL, Ravasio A, González-Aramundiz JV, Zacconi FC. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) prepared by microwave and ultrasound-assisted synthesis: Promising green strategies for the nanoworld. Pharmaceutics. 2023;15(5):1333. doi: 10.3390/pharmaceutics15051333.
Zhang X, Wu W. Ligand-mediated active targeting for enhanced oral absorption. Drug Discov Today. 2014;19(7):898-904. doi: 10.1016/ Jdrudis.2014.03.001.
Zhang M, Xu C, Liu D, Han MK, Wang L, Merlin D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohn's Colitis. 2018;12(2):217-29. doi: 10.1093/ecco-jcc/jjx115.
Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, et al. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24(10):1783-96. doi: 10.1038/mt.2016.159.
World Health Organization. [Internet]. Addressing the impact of nanotechnology on health. [Cited: 3-Oct-2023]. Available from: https://www.who.int/europe/health-topics/health-impact-assessment/addressing-the-impact-of-nanotechnology-on-health#tab=tab_1.
Afzal O, Altamimi AS, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, et al. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials. 2022;12(24):4494. doi: 10.3390/nano12244494.
Bai X, Su G, Zhai S. Recent advances in nanomedicine for the diagnosis and therapy of liver fibrosis. Nanomaterials. 2020;10(10):1945. doi: 10.3390/nano10101945.
Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers. 2016;4(2):e1134415. doi: 10.1080/21688370.2015.1134415.
Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest. 2016;126(4):1173-80. doi: 10.1172/JCI81131.
Buzas EI, György B, Nagy G, Falus A, Gay S. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol. 2014;10(6):356-64. doi: 10.1038/nrrheum.2014.19.
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial extracellular vesicles in gastrointestinal tract cancer: an unexplored territory. Cancers. 2021;13(21):5450. doi: 10.3390/cancers13215450.
Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B. Extracellular vesicles in physiology, pathology and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci. 2016;10:109. doi: 3389/fncel.2016.00109.
van Dommelen SM, Vader P, Lakhal S, Kooijmans SA, van Solinge WW, Wood MJ, et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release. 2012;161(2):635-44. doi: 10.1016/ Jjconrel.2011.11.021.
Jiang L, Shen Y, Guo D, Yang D, Liu J, Fei X, et al. EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance. Nat Commun. 2016;7(1):13045. doi: 10.1038/ncomms13045.
Yang X, Meng S, Jiang H, Chen T, Wu W. Exosomes derived from interleukin-10-treated dendritic cells can inhibit trinitrobenzene sulfonic acid-induced rat colitis. Scand J Gastroenterol. 2010;45(10):1168-77. doi: 10.3109/00365521.2010.490596.
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther;23(5):812-23. doi: 10.1038/mt.2015.44.
Wang Y, Tian J, Tang X, Rui K, Tian X, Ma J, et al. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget. 2016;7(13):15356. doi: 10.18632/oncotarget.7324.
Yang J, Liu XX, Fan H, Tang Q, Shou ZX, Zuo DM, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PloS One. 2015;10(10):e0140551. doi: 0.1371/journal.pone.0140551.
Mao F, Wu Y, Tang X, Kang J, Zhang B, Yan Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. Bio Med Res Int. 2017;2017(1):5356760. doi: 10.1155/2017/5356760.
Zhang M, Merlin D. curcuma longa-derived nanoparticles reduce colitis and promote intestinal wound repair by inactivating the NF-ΚB pathway. Gastroenterology. 2017;152(5):S567. doi: 10.1016/S0016-5085.
Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome like nanoparticles. Mol Nutr Food Res. 2014 Jul;58(7):1561-73. doi: 10.1002/mnfr.201300729.
Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017;25(7):1641-54. doi: 10.1016/ Jymthe.2017.01.025.
Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345-57. doi: 10.1038/mt.2013.64.
Hani U, Gowda BJ, Haider N, Ramesh KV, Paul K, Ashique S, et al. Nanoparticle-based approaches for treatment of hematological malignancies: a comprehensive review. AAPS Pharm Sci Tech. 2023;24(8):233. doi: 10.1208/s12249-023-02670-0.
Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci Biotechnol. 2020 Feb; 29:149-68. doi: 10.1007/s10068-019-00731-4.
Alshetaili AS, Ali R, Qamar W, Almohizea S, Anwer MK. Preparation, optimization, and characterization of chrysin-loaded TPGS-b-PCL micelles and assessment of their cytotoxic potential in human liver cancer (Hep G2) cell lines. Int J Biol Macromol. 2023 Aug 15;246:125679. doi: 10.1016/j.ijbiomac.2023.125679.
Antoniou AI, Giofrè S, Seneci P, Passarella D, Pellegrino S. Stimulus-responsive liposomes for biomedical applications. Drug Discov Today. 2021;26(8):1794-824. doi: 10.1016/ Jdrudis.2021.05.010.
Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22(3):522-34. doi: 10.1038/mt.2013.190.
Aroraa S, Dhoke V, Moharir K, Yende S, Shah S. Novel drug delivery system of Phytopharmaceuticals: a review. Curr Tradit Med. 2021;7(5):73-86. doi: 10.2174/2210676613666210323121658.
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the therapeutic potential of natural compounds in psoriasis and their inclusion in nanotechnological systems. Antioxidants (Basel). 2024 Jul 28;13(8):912. doi: 10.3390/antiox13080912.
Shukla Y, Singh M. Cancer preventive properties of ginger: a brief review. Food Chem Toxicol. 2007;45(5):683-90. doi: 10.1016/ Jfct.2006.11.002.
Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321-40. doi: 10.1016/ Jbiomaterials.2016.06.018.
Zhang M, Collins JF, Merlin D. Do ginger-derived nanoparticles represent an attractive treatment strategy for inflammatory bowel diseases? Nanomedicine. 2016; 11(23):3035-7. doi: 10.2217/nnm-2016-0353.
Chandel AK, Bhingradiya N. Therapeutic efficacy of herbal formulations through novel drug delivery systems. In: Enhancing the therapeutic efficacy of herbal formulations IGI Global. 2021:1-42. doi: 10.4018/978-1-7998-4453-2.ch001.
Najjari N, Sari S, Saffari M, Kelidari H, Nokhodchi A. Formulation optimization and characterization of Pistacia atlantica Desf. essential oil-loaded nanostructured lipid carriers on the proliferation of human breast cancer cell line SKBR3 (in vitro studies). J Herbal Med. 2022;36:100600. doi: 10.1016/ Jhermed.2022.100600.
Obeid MA, Ogah CA, Ogah CO, Ajala OS, Aldea MR, Gray AI, et al. Formulation and evaluation of nanosized hippadine-loaded niosome: Extraction and isolation, physicochemical properties and in vitro cytotoxicity against human ovarian and skin cancer cell lines. J Drug Deliv Sci Technol. 2023;87:104766. doi: 10.1016/ Jjddst.2023.104766.
Parveen S, Kumar S, Pal S, Yadav NP, Rajawat J, Banerjee M. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery. Int. J Pharm 2023;643:123212. doi: 10.1016/ Jijpharm.2023.123212.
Schoellhammer CM, Schroeder A, Maa R, Lauwers GY, Swiston A, Zervas M, et al. Ultrasound-mediated gastrointestinal drug delivery. Sci Transl Med. 2015;7(310):310-68. doi: 10.1126/scitranslmed.aaa5937.
Traverso G, Schoellhammer CM, Schroeder A, Maa R, Lauwers GY, Polat BE, et al. Microneedles for drug delivery via the gastrointestinal tract. J Pharm Sci. 2015;104(2):362-7. doi: 10.1002/jps.24182.
Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 2013;7(3):2042-55. doi: 10.1021/nn304235J.
Gao J, Wang S, Wang Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials. 2017;135:62-73. doi: 10.1016/ Jbiomaterials.2017.05.003.
Burnouf T, Burnouf PA, Wu YW, Chuang EY, Lu LS, Goubran H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov Today. 2018;23(5):934-43. doi: 10.1016/ Jdrudis.2017.08.012.
Wei X, Gao J, Fang RH, Luk BT, Kroll AV, Dehaini D, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials. 2016;111:116-23. doi: 10.1016/ Jbiomaterials.2016.10.003.
Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118-21. doi: 10.1038/nature15373.
Xuan M, Shao J, Dai L, Li J, He Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl Mater Interfaces. 2016;8(15):9610-8. doi: 10.1021/acsami.6b00853.
Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014;9(3):204-10. doi: 10.1038/nnano.2014.17.
Chu D, Gao J, Wang Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano. 2015;22;9(12):11800-11. doi: 10.1021/acsnano.5b05583.
Kumar A, Behl T, Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol. 2020;149:1262-74. doi: 10.1016/ Jijbiomac.2020.02.048.
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, et al. Cyclodextrin-based arsenal for anti-cancer treatments. Crit Rev Ther Drug Carrier Syst. 2023;40(2):1-41. doi: 10.1615/CritRevTherDrugCarrierSyst.2022038398.
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2(7):1-8. doi: 10.1038/natrevmats.2017.24.
Zhao R, Han X, Li Y, Wang H, Ji T, Zhao Y, et al. Photothermal effect enhanced cascade-targeting strategy for improved pancreatic cancer therapy by gold nanoshell@ mesoporous silica nanorod. ACS Nano. 2017;11(8):8103-13. doi: 10.1021/acsnano.7b02918.
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci. 2016;4(3):375-90. doi: 10.1039/C5BM00532A.
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi: 10.1016/ Jaddr.2012.09.037.
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813-27. doi: 10.1038/nrd4333.
Bhattacharya T, Soares GA, Chopra H, Rahman MM, Hasan Z, Swain SS, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials. 2022 Jan 21;15(3):804. doi: 10.3390/ma15030804.
Nayak D, Chopra H, Chakrabartty I, Saravanan M, Barabadi H, Mohanta YK. Opportunities and challenges for bioengineered metallic nanoparticles as future nanomedicine. In: Bioengineered nanomaterials for wound healing and infection control. Amsterdam, NA: Elsevier 2023; pp. 517-540. doi: 10.1016/B978-0-323-95376-4.00012-5.
Kanithi M, Kumari L, Yalakaturi K, Munjal K, Jimitreddy S, Kandamuri M, et al. Nanoparticle polymers influence on cardiac health: good or bad for cardiac physiology? Curr Probl Cardiol. 2024 Jan 1;49(1):102145. doi: 10.1016/ Jcpcardiol.2023.102145.
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, et al. Green metallic nanoparticles: biosynthesis to applications. Front Bioeng Biotechnol 2022 Apr 6;10:874742 doi: 10.3389/fbioe.2022.874742.
Biswas P, Polash SA, Dey D, Kaium MA, Mahmud AR, Yasmin F, et al. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomed Pharmacother. 2023 Feb 1;158:114172. doi: 10.1016/ Jbiopha.2022.114172.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).