Diverse Routes in the Development of Obesity

  • Preeti
  • Rahul Kumar Sharma
  • Shivani Chopra
  • Hitesh Chopra Saveetha college of Engineering
Keywords: Obesity, Neuroinflammatory diseases, Gastrointestinal microbiome, Hypothalamo-hypophyseal system, Adrenal glands, Immunology, Leptin, Resistance

Abstract


Obesity, a prevalent community health concern, is a diseased state characterised by an abundance of adipose tissue. This condition arises from notable transformations resulting from modern civilisation, where overconsumption and sedentary behaviours have become commonplace in contemporary society. Obesity’s prevalence and associated health effects present a significant public health challenge affecting both physical and cognitive health and executive function impairments are commonly observed. In obese individuals, suggesting a complex interplay between weight and cognitive well-being, the gut microbiota serves as a bridge between external factors like diet and lifestyle and the body’s physiological processes, potentially illuminating the intricate pathways connecting these health issues. Unhealthy dietary patterns characteristic of Western diets contributes to imbalances in the gut microbiota, which can exacerbate obesity-related complications. Research indicates that the gut microbiota linked to obesity may instigate various changes in the body, including disruptions in the hypothalamic-pituitary-adrenal axis. These disruptions can lead to disturbances in hormone regulation, desensitisation of leptin receptors, resistance and neuroinflammation. It is crucial to grasp the interplay between altered the hypothalamic-pituitary-adrenal (HPA) axis activity and long-term consequences of obesity, considering factors like age, gender and racial disparities. Examining the intricate connection between neuro-immunology and immune metabolism, particularly in adipose tissue where immune cells and the sympathetic nervous system (SNS) play crucial roles, can provide insights into the complex mechanisms of obesity-related health issues. This review emphasises the multifaceted mechanisms in the development of obesity, laying the groundwork for understanding various avenues that could be explored for innovative and effective pharmaceutical interventions in obesity management.

References

World Health Organization. [Internet]. Obesity and overweight. [Cited: 1-Dec-2024]. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

Chaudhary M, Sharma P. Abdominal obesity in India: analysis of the National Family Health Survey-5 (2019-2021) data. Lancet Reg Health Southeast Asia. 2023 May 12;14:100208. doi: 10.1016/j.lansea.2023.100208.

Solomons NW, Gross R. Urban nutrition in developing countries. Nutrition Rev. 1995 Apr 1;53(4):90-5. doi: 10.1111/j.1753-4887.1995.tb01526.x.

Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev. 2018 Oct 1;98(4):1911-1941. doi: 10.1152/physrev.00034.2017.

Lotta LA, Gulati P, Day FR, Payne F, Ongen H, Van De Bunt M, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Gen. 2017 Jan;49(1):17-26. doi: 10.1038/ng.3714.

Kvist H, Sjöström L, Tylén U. Adipose tissue volume determinations in women by computed tomography: technical considerations. Int J Obes. 1986;10(1):53-67. PMID: 3710689.

Thomas EL, Saeed N, Hajnal JV, Brynes A, Goldstone AP, Frost G, Bell JD. Magnetic resonance imaging of total body fat. J Appl Physiol (1985). 1998 Nov;85(5):1778-85. doi: 10.1152/jappl.1998.85.5.1778.

Heilbronn LK, Rood J, Janderova L, Albu JB, Kelley DE, Ravussin E, et al. Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metabol. 2004 Apr 1;89(4):1844-8. doi: 10.1210/jc.2003-031410.

Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008 Jun;28(6):1039-49. doi: 10.1161/ATVBAHA.107.159228.

Piché ME, Poirier P. Obesity, ectopic fat and cardiac metabolism. Expert Rev Endocrinol Metab. 2018 Jul;13(4):213-221. doi: 10.1080/17446651.2018.1500894.

Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Inv. 2011 Jun 1;121(6):2111-7. doi: 10.1172/JCI57132.

Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Inv. 2017 Jan 3;127(1):43-54. doi: 10.1172/JCI88880.

Ravussin Y, Leibel RL, Ferrante AW. A missing link in body weight homeostasis: the catabolic signal of the overfed state. Cell Metabol. 2014 Oct 7;20(4):565-72. doi: 10.1016/j.cmet.2014.09.002.

Hill JO, Saris WH, Levine JA. Energy expenditure in physical activity. In: Bray GA, Bouchard C, eds. Handbook of obesity. Boca Raton, FL: CRC Press 2003; pp. 647-670. doi: 10.3109/9780203913376.

Hill JO, Commerford R. Physical activity, fat balance, and energy balance. Int J Sport Nutr Exercise Metabol. 1996 Jun 1;6(2):80-92. doi: 10.1123/ijsn.6.2.80.

Berthoud HR, Albaugh VL, Neuhuber WL. Gut-brain communication and obesity: understanding functions of the vagus nerve. J Clin Inv. 2021 May 17;131(10). doi: 10.1172/JCI143770.

Gautron L, Elmquist JK, Williams KW. Neural control of energy balance: translating circuits to therapies. Cell. 2015 Mar 26;161(1):133-45. doi: 10.1016/j.cell.2015.02.023.

Benomar Y, Taouis M. Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: pivotal role of resistin/TLR4 pathways. Frontiers Endocrinol. 2019 Mar 8;10:140. doi: 10.3389/fendo.2019.00140.

Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu. Rev. Physiol.. 2008 Mar 17;70:537-56. doi: 10.1146/annurev.physiol.70.113006.100707

Larabee CM, Neely OC, Domingos AI. Obesity: a neuroimmunometabolic perspective. Nature Rev Endocrinol. 2020 Jan;16(1):30-43. doi: 10.1038/s41574-019-0283-6.

Chalew S, Nagel H, Shore S. The hypothalamic-pituitary-adrenal axis in obesity. Obes Res. 1995 Jul;3(4):371-82. doi: 10.1002/j.1550-8528.1995.tb00163.x.

Huet L, Delgado I, Aouizerate B, Castanon N, Capuron L. Obesity and depression: shared pathophysiology and translational implications. Neurobiol Depression. 2019 Jan 1:169-83. doi: 10.1016/B978-0-12-813333-0.00016-0.

Daly DM, Park SJ, Valinsky WC, Beyak MJ. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol. 2011 Jun 1;589(Pt 11):2857-70. doi: 10.1113/jphysiol.2010.204594.

Grasset E, Puel A, Charpentier J, Collet X, Christensen JE, Tercé F, Burcelin R. A specific gut microbiotadysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metabolism. 2017 May 2;25(5):1075-90. doi: 10.1016/j.cmet.2017.04.013.

Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut–intestinal permeability. J Affect Disorders. 2007 Apr 1;99(1-3):237-40. doi: 10.1016/j.jad.2006.08.021

O’Mahony SM, Hyland NP, Dinan TG, Cryan JF. Maternal separation as a model of brain–gut axis dysfunction. Psychopharmacol. 2011 Mar;214:71-88. doi: 10.1007/s00213-010-2010-9.

Grenham S, Clarke G, Cryan JF, Dinan TG. Brain–gut–microbe communication in health and disease. Frontiers Physiol. 2011 Dec 7;2:94. doi: 10.3389/fphys.2011.00094.

O'Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biological Psych. 2009 Feb 1;65(3):263-7. doi: 10.1016/j.biopsych.2008.06.026.

Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress. 2017 Dec 1;7:124-36. doi: 10.1016/j.ynstr.2017.03.001.

Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014 Oct;4(4):1339-68. doi: 10.1002/cphy.c130055.

Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nature Rev Gastroenterol Hepatol. 2014 Oct;11(10):611-27. doi: 10.1038/nrgastro.2014.103 .

Saulnier DM, Ringel Y, Heyman MB, Foster JA, Bercik P, Shulman RJ, et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes. 2013 Jan-Feb;4(1):17-27. doi: 10.4161/gmic.22973.

Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 2007 Jul;5(7):e156. doi: 10.1371/journal.pbio.0050156.

Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006 Jun 2;312(5778):1355-9. doi: 10.1126/science.1124234.

Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, et al. Interplay between the gut-brain axis, obesity and cognitive function. Frontiers Neurosci. 2018 Mar 16;12:155. doi: 10.3389/fnins.2018.00155.

Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Rev Endocrinol. 2017 Jan;13(1):11-25. doi: 10.1038/nrendo.2016.150.

Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017 Jan 1;179:223-44. doi: 10.1016/j.trsl.2016.10.002.

Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota–gut–brain axis in obesity. Lancet Gastroenterol Hepatol. 2017 Oct 1;2(10):747-56. doi: 10.1016/S2468-1253(17)30147-4.

Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biological Psych. 2010 Mar 1;67(5):446-57. doi: 10.1016/j.biopsych.2009.09.033.

Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004 Jul 23;118(2):229-41. doi: 10.1016/j.cell.2004.07.002.

Koppel N, Balskus EP. Exploring and understanding the biochemical diversity of the human microbiota. Cell chemical biology. 2016 Jan 21;23(1):18-30. doi: 10.1016/j.chembiol.2015.12.008

Moya-Pérez A, Neef A, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PloS One. 2015 Jul 10;10(7):e0126976. doi: 10.1371/journal.pone.0126976.

Mawe GM, Hoffman JM. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nature Rev Gastroenterol Hepatol. 2013 Aug;10(8):473-86. doi: 10.1038/nrgastro.2013.105.

Spiller R. Serotonin and GI clinical disorders. Neuropharm. 2008 Nov 1;55(6):1072-80. doi: 10.1016/j.neuropharm.2008.07.016.

Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocrine rev. 1999 Feb 1;20(1):68-100. doi: 10.1210/edrv.20.1.0357.

Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000 Apr 6;404(6778):661-71. doi: 10.1038/35007534.

Könner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Beh. 2009 Jul 14;97(5):632-8. doi: 10.1016/j.physbeh.2009.03.027.

Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci. 2010 Nov;1212:97-113. doi: 10.1111/j.1749-6632.2010.05799.x.

Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obesity. 2001 Dec;25(5):S63-7. doi: 10.1038/sj.ijo.0801913.

Lenard NR, Berthoud HR. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring). 2008 Dec;16 Suppl 3(Suppl 3):S11-22. doi: 10.1038/oby.2008.511.

Barreto-Vianna AR, Aguila MB, Mandarim-de-Lacerda CA. Effects of liraglutide in hypothalamic arcuate nucleus of obese mice. Obesity (Silver Spring). 2016 Mar;24(3):626-33. doi: 10.1002/oby.21387.

Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Med. 1995 Dec 1;1(12):1311-4. doi: 10.1038/nm1295-1311.

Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006 Sep 21;443(7109):289-95. doi: 10.1038/nature05026.

McNay DE, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Inv. 2012 Jan 3;122(1):142-52. doi: 10.1172/JCI43134.

Zhang F, Basinski MB, Beals JM, Briggs SL, Churgay LM, Clawson DK, et al. Crystal structure of the obese protein Ieptin-E100. Nature. 1997 May 8;387(6629):206-9. doi: 10.1038/387206a0.

Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obesity. 2002 Nov;26(11):1407-33. doi: 10.1038/sj.ijo.0802142.

Wrann CD, Eguchi J, Bozec A, Xu Z, Mikkelsen T, Gimble J, et al. FOSL2 promotes leptin gene expression in human and mouse adipocytes. J Clin Inv. 2012 Feb 13;122(3). doi: 10.1172/JCI58431.

Gautron L, Elmquist JK. Sixteen years and counting: an update on leptin in energy balance. J Clin Inv. 2011 Jun 1;121(6):2087-93. doi: 10.1172/JCI45888

Elmquist JK, Bjørbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol. 1998 Jun 15;395(4):535-47. PMID: 9619505.

Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, Elmquist JK. Leptin targets in the mouse brain. J Comp Neurol. 2009 Jun 10;514(5):518-32. doi: 10.1002/cne.22025.

Lee EB. Obesity, leptin, and Alzheimer's disease. Ann N Y Acad Sci. 2011 Dec;1243:15-29. doi: 10.1111/j.1749-6632.2011.06274.x.

Lee EB, Mattson MP. The neuropathology of obesity: insights from human disease. Actaneuropathologica. 2014 Jan;127:3-28. doi: 10.1007/s00401-013-1190-x.

Ahima RS, Hileman SM. Postnatal regulation of hypothalamic neuropeptide expression by leptin: implications for energy balance and body weight regulation. Reg Peptides. 2000 Aug 25;92(1-3):1-7. doi: 10.1016/S0167-0115(00)00142-7.

Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Inv. 1998 Mar 1;101(5):1020-7. doi: 10.1172/JCI1176.

Shpilman M, Niv-Spector L, Katz M, Varol C, Solomon G, Ayalon-Soffer M, et al. Development and characterization of high affinity leptins and leptin antagonists. J Biol Chem. 2011 Feb 11;286(6):4429-42. doi: 10.1074/jbc.M110.196402.

Elinav E, Niv-Spector L, Katz M, Price TO, Ali M, Yacobovitz M, et al. Pegylatedleptin antagonist is a potent orexigenic agent: preparation and mechanism of activity. Endocrinology. 2009 Jul 1;150(7):3083-91. doi: 10.1210/en.2008-1706.

Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7001-5. doi: 10.1073/pnas.94.13.7001.

Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1247-59. doi: 10.1152/ajpendo.00274.2009.

Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8374-8. doi: 10.1073/pnas.93.16.8374.

Chua Jr SC, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996 Feb 16;271(5251):994-6. doi: 10.1126/science.271.5251.994.

Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996 Feb 9;84(3):491-5. doi: 10.1016/S0092-8674(00)81294-5.

Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Ann Rev Immunol. 1997 Apr;15(1):797-819. doi: 10.1146/annurev.immunol.15.1.797.

Banks AS, Davis SM, Bates SH, Myers MG. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000 May 12;275(19):14563-72. doi: 10.1074/jbc.275.19.14563.

White DW, Kuropatwinski KK, Devos R, Baumann H, Tartaglia LA. Leptin receptor (OB-R) signaling: cytoplasmic domain mutational analysis and evidence for receptor homo-oligomerization. J Biol Chem. 1997 Feb 14;272(7):4065-71. doi: 10.1074/jbc.272.7.4065.

Tartaglia LA. The leptin receptor. J Biol Chem.1997 Mar 7;272(10):6093-6. doi: 10.1074/jbc.272.10.6093.

Hekerman P, Zeidler J, Bamberg‐Lemper S, Knobelspies H, Lavens D, Tavernier J, et al. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. The FEBS J. 2005 Jan;272(1):109-19. doi: 10.1111/j.1742-4658.2004.04391.x.

Jiang L, Li Z, Rui L. Leptin stimulates both JAK2-dependent and JAK2-independent signaling pathways. J Biol Chem. 2008 Oct 17;283(42):28066-73. doi: 10.1074/jbc.M805545200.

Vaisse C, Halaas JL, Horvath CM, Darnell Jr JE, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild–type and ob/ob mice but not db/db mice. Nature genetics. 1996 Sep 1;14(1):95-7. doi: 10.1038/ng0996-95

Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Human molecular genetics. 2009 Apr 1;18(7):1323-31. doi: 10.1093/hmg/ddp031

Rahmouni K, Fath MA, Seo S, Thedens DR, Berry CJ, Weiss R, et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome Clin Inv. 2008 Apr 1;118(4):1458-67. doi: 10.1172/JCI32357.

Bjørbæk C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Molecular Cell. 1998 Mar 1;1(4):619-25. doi: 10.1016/S1097-2765(00)80062-3.

Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, et al. Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol. 2002 Sep 30;195(1-2):109-18. doi: 10.1016/S0303-7207(02)00178-8.

Gamber KM, Huo L, Ha S, Hairston JE, Greeley S, Bjørbæk C. Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PloS One. 2012 Jan 20;7(1):e30485. doi: 10.1371/journal.pone.0030485.

Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ, Simonds S, Wiede F, Reichenbach A, Hauser C, Sims NA. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell metabolism. 2011 Nov 2;14(5):684-99. doi: 10.1016/j.cmet.2011.09.011

Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjørbæk C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nature Med. 2004 Jul;10(7):734-8. doi: 10.1038/nm1072.

Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, et al. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Developmental Cell. 2002 Apr 1;2(4):497-503. doi: 10.1038/nm1072.

Reed AS, Unger EK, Olofsson LE, Piper ML, Myers Jr MG, et al. Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes. 2010 Apr 1;59(4):894-906. doi: 10.2337/db09-1024.

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Inv. 2003 Dec 15;112(12):1796-808. doi: 10.1172/JCI19246.

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Inv. 2003 Dec 15;112(12):1821-30. doi: 10.1172/JCI19451.

Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Inv. 2007 Jan 2;117(1):175-84. doi: 10.1172/JCI29881.

Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008 Dec 1;57(12):3239-46. doi: 10.2337/db08-0872.

Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Set al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metabol. 2014 Oct 7;20(4):614-25. doi: 10.1016/j.cmet.2014.08.010.

Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7265-70. doi: 10.1073/pnas.1133870100.

Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa KI, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Inv. 2006 Jun 1;116(6):1494-505. doi: 10.1172/JCI26498.

Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Inv. 2006 Jan 4;116(1):115-24. doi: 10.1172/JCI24335.

Sartipy P, Loskutoff DJ. Expression profiling identifies genes that continue to respond to insulin in adipocytes made insulin-resistant by treatment with tumor necrosis factor-α. J Biol Chem. 2003 Dec 26;278(52):52298-306. doi: 10.1074/jbc.M306922200.

Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways [S]. J Lipid Res. 2012 Sep 1;53(9):2002-13. doi: 10.1194/jlr.D029546.

Erridge C, Samani NJ. Saturated fatty acids do not directly stimulate Toll-like receptor signaling. Arterioscler Thromb Vasc Biol. 2009 Nov;29(11):1944-9. doi: 10.1161/ATVBAHA.109.194050.

Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nature Med. 2012 Aug;18(8):1279-85. doi: 10.1038/nm.2851.

Hellman L, Nakada F, Curti J, Weitzman ED, Kream J, Roffwarg H, et al. Cortisol is secreted episodically by normal man. J Clin Endocrinol Metab. 1970 Apr;30(4):411-22. doi: 10.1210/jcem-30-4-411.

Mills JN. Human circadian rhythms. Physiol Rev. 1966 Jan;46(1):128-71. doi: 10.1152/physrev.1966.46.1.128.

Katsu Y, Baker ME. Cortisol. In: Ando H, Ukena K, Nagata S, eds. Hormones handbook. Cambridge, MA: Academic Press 2021; pp. 947-949. doi: 10.1016/B978-0-12-820649-2.00261-8.

Kelly JJ, Mangos G, Williamson PM, Whitworth JA. Cortisol and hypertension. Clin Exp Pharmacol Physiol Suppl. 1998 Nov;25:S51-6. doi: 10.1111/j.1440-1681.1998.tb02301.x.

Canalis E. The hormonal and local regulation of bone formation. Endocrine Reviews. 1983 Jan 1;4(1):62-77. doi: 10.1210/edrv-4-1-62.

Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and cortisol secretion and implications for disease. Endocrine reviews. 2020 Jun;41(3):bnaa002. doi: 10.1210/endrev/bnaa002

Papadimitriou A, Priftis KN. Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation. 2009 Jun 1;16(5):265-71. doi: 10.1159/000216184.

Jacobson L. Hypothalamic–pituitary–adrenocortical axis regulation. Endocrinol Metabol Clin. 2005 Jun 1;34(2):271-92. doi: 10.1016/j.ecl.2005.01.003.

Tasker JG, Herman JP. Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic–pituitary–adrenal axis. Stress. 2011 Jul 1;14(4):398-406. doi: 10.3109/10253890.2011.586446.

Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol. 2013 Nov 5;380(1-2):65-78. doi: 10.1016/j.mce.2013.03.007.

Dumbell R, Matveeva O, Oster H. Circadian clocks, stress, and immunity. Frontiers Endocrinol. 2016 May 2;7:37. doi: 10.3389/fendo.2016.00037.

Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Rev Neurosci. 2009 Jun;10(6):434-45. doi: 10.1038/nrn2639.

Szenas P, Pattee CJ. Studies of adrenocortical function in obesity. J Clin Endocrinol Metabolism. 1959 Mar 1;19(3):344-50. doi: 10.1210/jcem-19-3-344.

Hewagalamulage SD, Lee TK, Clarke IJ, Henry BA. Stress, cortisol, and obesity: a role for cortisol responsiveness in identifying individuals prone to obesity. Domestic Anim Endocrinol. 2016 Jul 1;56:S112-20. doi: 10.1016/j.domaniend.2016.03.004.

van Rossum EF. Obesity and cortisol: New perspectives on an old theme. Obesity (Silver Spring). 2017 Mar;25(3):500-501. doi: 10.1002/oby.21774.

Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008 Sep 1;31(9):464-8. doi: 10.1016/j.tins.2008.06.006.

126. Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosomatic Med. 2011 Feb 1;73(2):114-26. doi: 10.1097/psy.0b013e31820ad12b.

Calfa G, Kademian S, Ceschin D, Vega G, Rabinovich GA, Volosin M. Characterization and functional significance of glucocorticoid receptors in patients with major depression: modulation by antidepressant treatment. Psychoneuroendocrinology. 2003 Jul 1;28(5):687-701. doi: 10.1016/s0306-4530(02)00051-3.

Cattaneo A, Riva MA. Stress-induced mechanisms in mental illness: a role for glucocorticoid signalling. The J Steroid Biochem Molecular Biol. 2016 Jun 1;160:169-74. doi: 10.1016/j.jsbmb.2015.07.021.

Rodriguez AC, Epel ES, White ML, Standen EC, Seckl JR, Tomiyama AJ. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: a systematic review. Psychoneuroendocrinology. 2015 Dec 1;62:301-18. doi: 10.1016/j.psyneuen.2015.08.014.

Wake DJ, Rask E, Livingstone DE, Söderberg S, Olsson T, Walker BR. Local and systemic impact of transcriptional up-regulation of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metabolism. 2003 Aug 1;88(8):3983-8. doi: 10.1210/jc.2003-030286.

Walker BR, Andrew R. Tissue production of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 and metabolic disease. Ann N Y Acad Sci. 2006 Nov;1083:165-84. doi: 10.1196/annals.1367.012.

Desbriere R, Vuaroqueaux V, Achard V, Boullu-Ciocca S, Labuhn M, Dutour A, et al. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity (Silver Spring). 2006 May;14(5):794-8. doi: 10.1038/oby.2006.92.

Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Inv. 2003 Jul 1;112(1):83-90. doi: 10.1172/JCI17845.

Batra V, Norman E, Morgan HL, Watkins AJ. Parental programming of offspring health: the intricate interplay between diet, environment, reproduction and development. Biomolecules. 2022 Sep 13;12(9):1289. doi: 10.3390/biom12091289.

Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Inv. 2017 Jan 3;127(1):24-32. doi: 10.1172/JCI88878.

Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N, et al. Obesity and gut-microbiota-brain axis: A narrative review. J Clin Lab Anal. 2022 May;36(5):e24420. doi: 10.1002/jcla.24420.

Sohail K, Aiman UE, Younis S, Deeba F. Endocrinal association of hypothalamic-pituitary-adrenal (HPA) axis with obesity. J Microbiol Molec Gen. 2020 Aug 31;1(2):32-43. doi: 10.52700/jmmg.v1i2.16.

Baker JS, Supriya R, Dutheil F, Gao Y. Obesity: treatments, conceptualizations, and future directions for a growing problem. Biology. 2022 Jan 19;11(2):160. doi: 10.3390/biology11020160.

Rippe JM. Future directions in obesity and weight management. In: Rippe JM, Foreyt JP, eds. Obesity prevention and treatment. Boca Raton, FL: CRC Press 2021; pp. 215-224. doi: 10.1201/9781003099116.

GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. New England journal of medicine. 2017 Jul 6;377(1):13-27. doi: 10.1056/NEJMoa1614362

Prabhakaran D, Anand S, Gaziano TA, Mbanya JC, Wu Y, Nugent R, editors. Cardiovascular, respiratory, and related disorders. 3rd ed. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2017 Nov 17. PMID: 30212054.

Walker E, Wolfe BM. Obesity prevention. In: Nguyen NT, et al, eds. The ASMBS textbook of bariatric surgery. Amsterdam: Springer. 2020; pp- 595-611. doi: 10.1007/978-3-030-27021-6_54.

Cunningham AL, Stephens JW, Harris DA. A review on gut microbiota: a central factor in the pathophysiology of obesity. Lipids Health Dis. 2021 Dec;20(1):1-3. doi: 10.1186/s12944-021-01491-z

Scarpace PJ, Zhang Y. Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiol Regul Int Comp Physiol. 2009 Mar;296(3):R493-500. doi: 10.1152/ajpregu.90669.2008.

Marques CG, dos Santos Quaresma MV, Nakamoto FP, Magalhães AC, Lucin GA, Thomatieli-Santos RV. Does modern lifestyle favor neuroimmunometabolic changes? A path to obesity. Frontiers Nutrition. 2021:686. doi: 10.3389/fnut.2021.705545.

Martinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron. 2022 Nov 2;110(21):3597-626. doi: 10.1016/j.neuron.2022.10.017.

Cai Z, Huang Y, He B. New insights into adipose tissue macrophages in obesity and insulin resistance. Cells. 2022 Apr 22;11(9):1424. doi: 10.3390/cells11091424.

Sominsky L, Spencer SJ. Eating behavior and stress: a pathway to obesity. Frontiers Psychology. 2014 May 13;5:434. doi: 10.3389/fpsyg.2014.00434.

Teeple K, Rajput P, Gonzalez M, Han-Hallett Y, Fernández-Juricic E, Casey T. High fat diet induces obesity, alters eating pattern and disrupts corticosterone circadian rhythms in female ICR mice. Plos one. 2023 Jan 20;18(1):e0279209. doi: 10.1371/journal.pone.0279209.

Published
2025/02/28
Section
Review article