Electrospun Nanofiber Meshes: Advancing the Science of Hernia Repair

  • Chandan Kumar Sahoo Chitkara University
  • Vishal Kumar Parida Chitkara University
  • Hitesh Chopra Saveetha college of Engineering
  • Inderbir Singh Chitkara University
Keywords: Nanofibers, Surgical mesh, Herniorrhaphy, Polypropylenes (PP), Polycaprolactone (PCL)

Abstract


Hernia repair continues to be a major barrier in surgical practice, thereby necessitating the continued research for the development of novel methods for hernia repair which mainly focuses on patient compliance. This review paper focuses on the developing paradigm of the nanofiber meshes for the treatment of hernia. This review article summarises the conventional methods for hernia repair, development of the nanofiber mesh, their properties, characterisation and biological evaluation. The review outlines the advantages and disadvantages of nanofiber mesh being used for hernia repair. This review also highlights recent research work carried out on nanofiber mesh for hernia repair and different patent and marketed nanofiber mesh developed for treating hernia. In the end, this review promotes the use of nanofiber meshes as a viable direction for developing the area of hernia repair, providing better patient outcomes and addressing the shortcomings of conventional approaches.

References

Baylón K, Rodríguez-Camarillo P, Elías-Zúñiga A, Díaz-Elizondo JA, Gilkerson R, Lozano K. Past, present and future of surgical meshes: a review. Membranes (Basel). 2017 Aug 22;7(3):47. doi: 10.3390/membranes7030047.

Hammoud M, Gerken J. Inguinal hernia. 2023 Aug 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30020704.

Hachisuka T, Femoral hernia repair. Surgical Clinics. 2003;83(5):1189-205. doi: 10.1016/S0039-6109(03)00120-8.

Conze J, Klinge U, Schumpelick V. Hernias, in Surgical treatment: Evidence-based and problem-oriented. Munich: Zuckschwerdt. 2001.

Klinge U, Conze J, Krones CJ, Schumpelick V. Incisional hernia: open techniques. World J Surg. 2005 Aug;29(8):1066-72. doi: 10.1007/s00268-005-7970-2.

Lau H, Patil NG. Umbilical hernia in adults. Surgical Endosc. 2003;17(12):2016-20. doi: 10.1007/s00464-003-9027-7.

Stamatiou D, Skandalakis JE, Skandalakis LJ, Mirilas P. Lumbar hernia: surgical anatomy, embryology, and technique of repair. Am Surg. 2009 Mar;75(3):202-7. PMID: 19350853.

Liang MK, Holihan JL, Itani K, Alawadi ZM, Gonzalez JR, Askenasy EP, et al. Ventral hernia management: expert consensus guided by systematic review. Ann Surg. 2017 Jan;265(1):80-9. doi: 10.1097/SLA.0000000000001701.

Indrasena B. Pathogenesis of hypogastric hernia. Clin Surg. 2018;3:1872.

Millikan KW, Deziel DJ. The management of hernia: considerations in cost effectiveness. Surg Clin North Am. 1996;76(1):105-16. doi: 10.1016/S0039-6109(05)70425-4.

Amid PK. Groin hernia repair: open techniques. World J Surg. 2005;29(8):1046-51. doi: 10.1007/s00268-005-7967-x.

Reinhorn M. Shouldice repair for left direct inguinal hernia. J Med Insight. 2022;2022(5). doi: 10.24296/jomi/340.

Indrasena BSH, Farhan ALMA, Jayasinghe PJTNSSK. Schley’s inguinal hernia repair: a single unit’s experience of a forgotten technique. Hernia. 2014;19(5):799-803. doi: 10.1007/s10029-014-1218-8.

Misiakos EP, Machairas A, Patapis P, Liakakos T. Laparoscopic ventral hernia repair: Pros and cons compared with open hernia repair. JSLS: J Soc Lapar Surg. 2008;12(2):117.

Eker HH, Hansson BM, Buunen M, Janssen IM, Pierik RE, Hop WC, et al. Laparoscopic vs. open incisional hernia repair: a randomized clinical trial. JAMA Surg. 2013 Mar;148(3):259-63. doi: 10.1001/jamasurg.2013.1466.

Chopra H, Kumar S, Safi SZ, Singh I, Emran TB. Wound dressings: Recent updates. Int J Surg. 2022 Aug;104:106793. doi: 10.1016/j.ijsu.2022.106793.

Cavazzola LT, Rosen MJ. Laparoscopic versus open inguinal hernia repair. Surg Clin North Am. 2013;93(5):1269-79. doi: 10.1016/j.suc.2013.06.013.

Qabbani A, Aboumarzouk OM, ElBakry T, Al-Ansari A, Elakkad MS. Robotic inguinal hernia repair: systematic review and meta-analysis. ANZ J Surg. 2021 Nov;91(11):2277-87. doi: 10.1111/ans.16505.

Donkor C, Gonzalez A, Gallas MR, Helbig M, Weinstein C, Rodriguez J. Current perspectives in robotic hernia repair. Robot Surg. 2017 May 5;4:57-67. doi: 10.2147/RSRR.S101809.

HerniaSurge Group. International guidelines for groin hernia management. Hernia. 2018 Feb;22(1):1-165. doi: 10.1007/s10029-017-1668-x.

Yu C, Feng S, Li Y, Chen J. Application of nondegradable synthetic materials for tendon and ligament injury. Macromol Biosci. 2023 Dec;23(12):e2300259. doi: 10.1002/mabi.202300259.

Cevasco M, Itani KM. Ventral hernia repair with synthetic, composite, and biologic mesh: characteristics, indications, and infection profile. Surg Infect (Larchmt). 2012 Aug;13(4):209-15. doi: 10.1089/sur.2012.123.

See CW, Kim T, Zhu D. Hernia mesh and hernia repair: a review. Engineered Reg. 2020;1:19-33. doi: 10.1016/j.engreg.2020.05.002.

Holihan JL, Nguyen DH, Nguyen MT, Mo J, Kao LS, Liang MK. Mesh location in open ventral hernia repair: a systematic review and network meta-analysis. World J Surg. 2016 Jan;40(1):89-99. doi: 10.1007/s00268-015-3252-9.

Skibiński R, Pasternak A, Szura M, Solecki R, Matyja M, Matyja A. Parastomal hernia--contemporary methods of treatment. Pol Przegl Chir. 2015 Oct;87(10):531-7. doi: 10.1515/pjs-2015-0100.

Köckerling F, Schug-Pass C, Bittner R. A word of caution: never use tacks for mesh fixation to the diaphragm! Surgical End. 2018;32(7):3295-302. doi: 10.1007/s00464-018-6050-2.

Gruber-Blum S, Riepl N, Brand J, Keibl C, Redl H, Fortelny RH, et al. A comparison of Progrip(®) and Adhesix (®) self-adhering hernia meshes in an onlay model in the rat. Hernia. 2014 Oct;18(5):761-9. doi: 10.1007/s10029-014-1258-0.

Tabbara M, Barrat C. Comment to "A comparison of Progrip® and Adhesix® self-adhering hernia meshes in an onlay model in the rat" Gruber-Blum S, Riepl N, Brand J, Keibl C, Redl H, Fortelny RH, Petter-Puchner AH (doi:10.1007/s10029-014-1258-0). Hernia. 2015 Jun;19(3):535-6. doi: 10.1007/s10029-015-1366-5.

Qamar N, Abbas N, Irfan M, Hussain A, Arshad MS, Latif S, et al. Personalized 3D printed ciprofloxacin impregnated meshes for the management of hernia. J Drug Del Sci Technol. 2019;53:101164. doi: 10.1016/j.jddst.2019.101164.

Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17(14):R89-R106. doi: 10.1088/0957-4484/17/14/r01.

Hall Barrientos IJ, Paladino E, Brozio S, Passarelli MK, Moug S, Black RA, et al. Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair. Int J Pharm. 2017 Jan 30;517(1-2):329-37. doi: 10.1016/j.ijpharm.2016.12.022.

Ebersole GC, Buettmann EG, MacEwan MR, Tang ME, Frisella MM, Matthews BD, et al. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surg Endosc. 2012 Oct;26(10):2717-28. doi: 10.1007/s00464-012-2258-8.

Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Engineering: C. 2009;29(3):663-8. doi: 10.1016/j.msec.2008.10.037.

Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci. 2014;14(6):772-92. doi: 10.1002/mabi.201300561.

Sharma A, Dheer D, Singh I, Puri V, Kumar P. Phytoconstituent-loaded nanofibrous meshes as wound dressings: a concise review. Pharmaceutics. 2023 Mar 24;15(4):1058. doi: 10.3390/pharmaceutics15041058.

Hansen S. Electrospun nanofiber mesh with fibroblast growth factor and stem cells for pelvic organ prolapse repair—An in vivo study in rats. In: neurourology and urodynamics. Hoboken, New Jersey: Wiley, 2017.

Mao Y, Meng Y, Li S, Li Y, Guidoin R, Qiao Y, et al. Comparative study on nanofiber containing polypropylene-based composite mesh for abdominal wall hernia repair. Materials Design. 2021;212:110227. doi: 10.1016/j.matdes.2021.110227.

Plencner M, Prosecká E, Rampichová M, East B, Buzgo M, Vysloužilová L, et al. Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int J Nanomedicine. 2015 Apr 1;10:2635-46. doi: 10.2147/IJN.S77816.

Afewerki S, Bassous N, Harb SV, Corat MAF, Maharjan S, Ruiz-Esparza GU, et al. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun Biol. 2021 Feb 19;4(1):233. doi: 10.1038/s42003-021-01758-2.

Kaya M, Ahi ZB, Ergene E, Yilgor Huri P, Tuzlakoglu K. Design of a new dual mesh with an absorbable nanofiber layer as a potential implant for abdominal hernia treatment. J Tissue Eng Regen Med. 2020 Feb;14(2):347-54. doi: 10.1002/term.3000.

Hamdan N, Yamin A, Hamid SA, Khodir WKWA, Guarino V. Functionalized antimicrobial nanofibers: design criteria and recent advances. J Funct Biomater. 2021 Oct 28;12(4):59. doi: 10.3390/jfb12040059.

Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-l-Lactic Acid (PLLA)-based biomaterials for regenerative medicine: a review on processing and applications. Polymers (Basel). 2022 Mar 14;14(6):1153. doi: 10.3390/polym14061153.

Wang X, Gittens RA, Song R, Tannenbaum R, Olivares-Navarrete R, Schwartz Z, et al. Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomater. 2012 Feb;8(2):878-85. doi: 10.1016/j.actbio.2011.10.023.

Ziabari M, Mottaghitalab V, Haghi AK. Evaluation of electrospun nanofiber pore structure parameters. Korean J Chem Engineering. 2008;25(4):923-32. doi: 10.1007/s11814-008-0151-x.

Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A. 2011 Mar 1;96(3):566-74. doi: 10.1002/jbm.a.33010.

Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM. Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small. 2009 May;5(10):1195-206. doi: 10.1002/smll.200801648.

Hang F, Lu D, Bailey RJ, Jimenez-Palomar I, Stachewicz U, Cortes-Ballesteros B, et al. In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy. Nanotechnology. 2011 Sep 7;22(36):365708. doi: 10.1088/0957-4484/22/36/365708.

Giuntoli G, Muzio G, Actis C, Ganora A, Calzone S, Bruno M, et al. In-vitro characterization of a hernia mesh featuring a nanostructured coating. Front Bioeng Biotechnol. 2021 Jan 20;8:589223.

Baranowska-Korczyc A, Warowicka A, Jasiurkowska-Delaporte M, Grześkowiak B, Jarek M, Maciejewskaet BM, al. Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Advances. 2016;6(24):19647-56. doi: 10.1039/c6ra02486f.

Pham Le Q, Uspenskaya MV, Olekhnovich RO, Baranov MA. The mechanical properties of PVC nanofiber mats obtained by electrospinning. Fibers. 2021;9(1):2. doi: 10.3390/fib9010002.

East B, Plencner M, Kralovic M, Rampichova M, Sovkova V, Vocetkova K, et al. A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment. Int J Nanomedicine. 2018 May 28;13:3129-43. doi: 10.2147/IJN.S159480.

Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications. Int J Biol Macromol. 2020 Dec 15;165(Pt A):902-17. doi: 10.1016/j.ijbiomac.2020.09.229.

East B, Plencner M, Otahal M, Amler E, de Beaux AC. Dynamic creep properties of a novel nanofiber hernia mesh in abdominal wall repair. Hernia. 2019 Oct;23(5):1009-15. doi: 10.1007/s10029-019-01940-w.

Mao Y, Meng Y, Li S, Li Y, Guidoin R, Wang F, et al. Alginate-assistant nanofiber integrated with polypropylene hernia mesh for efficient anti-adhesion effects and enhanced tissue compatibility. Composites Part B: Engineering. 2022;235:109761. doi: 10.1016/j.compositesb.2022.109761.

Aydemir Sezer U, Sanko V, Gulmez M, Aru B, Sayman E, Aktekin A, et al. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:1141-1152. doi: 10.1016/j.msec.2019.02.064.

Liu P, Chen N, Jiang J, Wen X. New surgical meshes with patterned nanofiber mats. RSC Advances. 2019;9(31):17679-90. doi: 10.1039/C9RA01917K.

Han H, Zhu J, Zhang FF, Li FX, Wang XL, Yu JY, et al. Hydrophilic and degradable polyesters based on l-aspartic acid with antibacterial properties for potential application in hernia repair. Biomater Sci. 2019 Dec 1;7(12):5404-13. doi: 10.1039/c9bm01214a.

Fehér D, Ferencz A, Szabó G, Juhos K, Csukás D, Voniatis C, et al. Early and late effects of absorbable poly(vinyl alcohol) hernia mesh to tissue reconstruction. IET Nanobiotechnol. 2021 Aug;15(6):565-74. doi: 10.1049/nbt2.12015.

Ballard DH, Jammalamadaka U, Tappa K, Weisman JA, Boyer CJ, Alexander JS, et al. 3D printing of surgical hernia meshes impregnated with contrast agents: in vitro proof of concept with imaging characteristics on computed tomography. 3D Print Med. 2018 Dec 7;4(1):13. doi: 10.1186/s41205-018-0037-4.

Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011 Oct;17(5):349-64. doi: 10.1089/ten.TEB.2011.0238.

Abele W, Kupferschmid FJ, Odermatt E, Muller E, Hans-Gerd Schmees HG. Flat implant, particularly a hernia mesh. 2009, US. Available at: https://patents.google.com/patent/US20090149875/und.

Fricke H, Buttstadt J. Flat implant made oftextile thread material, particularly a hernia mesh. 2005, US. Available at: https://patents.google.com/patent/WO2003094781A1/en.

Shen Q, Li H. Hernia repair patch with nano titanium. 2015, Wuhan Lanp Medical Products Co Ltd: CN.

Sholev M, Matter I, Tamir ZIV. Hernia repair device. 2015, Davol Inc A C R Bard Company: US.

Greenhalgh S, Romano JP, Speicher T. Hernia repair grafts having anti-adhesion barriers. 2018, US.

Adams Jason P. Inflatable hernia patch. 2016, Adams Jason P: US.

Sui W, Qian Y, Wang J. Light hernia repair patch and knitting method. 2016, Shanghai Xinhua Ruisi Medical Science & Technology Co Ltd: CN.

Tao X, Yuan Y, Zeng W. Hernia mesh and preparation method thereof. 2018, Hong Kong Res Inst Textiles & Apparel Ltd: CN.

LLC. First-In-Man Clinical Implantation of nanoMesh™. [Internet]. [Cited: 24-Jan-21]. Available at: https://www.biospace.com/article/releases/nanomesh-llc-a-subsidiary-of-exogenesis-corporation-announces-first-in-man-clinical-implantation-of-nanomesh-/.

Commission E. Targeting hernia operation using sustainable resources and green nanotechnologies. an integrated pan-european approach. [Internet]. [Cited: 24-Jan-21]. Available at: https://cordis.europa.eu/article/id/166007-biobased-ecofriendly-mesh-for-hernia-treatment.

Barcelona IMS. Bio-nanocellulose meshes improve hernia repair surgery. [Internet]. [Cited: 17-Jan-21]. Available at: https://phys.org/news/2021-04-bio-nanocellulose-meshes-hernia-surgery.html (accessed on 17 January 2021).

Published
2025/04/30
Section
Current topic