Potential of Naringin, Hesperidin and Rutin: Phytochemical and Biological Benefits
Abstract
This review provides an overview of the recent biological and phytochemical advancements of the compounds such as naringin, hesperidin and rutin, which are bioactive flavonoids mainly present in citrus fruits with substantial therapeutic potential. Naringin possesses beneficial properties such as antioxidant, antitumor, antiviral and many more discussed in the article. Studies have indicated that naringin aids in slowing the progression of cancer in different regions of the body. Its anticancer effects are so extensive that it can change how cells interact and transmit signals, decrease the production of specific proteins such as cytokines and growth factors, and also impede the proliferation of cancer cells. Hesperidin has demonstrated notable anticancer and neuroprotective potential. Rutin is widely recognised or known for its venotonic, anti-thrombotic, anti-inflammatory and anticancer properties. This review offers in-depth analysis and details of their constituents and their industrial applications.
References
Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016 Dec 1;54(12):3203-10. doi: 10.1080/13880209.2016.1216131.
Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci. 2018 Dec 15;215:43-56. doi: 10.1016/j.lfs.2018.10.066.
Ruiz-Moreno C, Lara B, Salinero JJ, Brito de Souza D, Ordovás JM, Del Coso J. Time course of tolerance to adverse effects associated with the ingestion of a moderate dose of caffeine. Eur J Nutr. 2020 Oct;59:3293-302 doi: 10.1007/s00394-019-02167-2.
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the AHA. Circ. 2020 Mar 3;141(9):e139-596. doi: 10.1161/CIR.0000000000000757.
Kopin L, Lowenstein C. In the Clinic® dyslipidemia. Ann Intern Med. 2017 Dec 5;167(11):ITC81-95. doi: 10.7326/AITC201712050.
Li X, Park NI, Xu H, Woo SH, Park CH, Park SU. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum). J Agric Food Chem. 2010 Dec 8;58(23):12176-81. doi: 0.1021/jf103310g.
Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm. J. 2017 Feb 1;25(2):149-64. doi: 10.1016/j.jsps.2016.04.025.
Tilburt JC, Kaptchuk TJ. Herbal medicine research and global health: an ethical analysis. Bull World Health Organ. 2008;86:594-9. doi: 10.2471/BLT.07.042820.
World Health Organization. WHO Traditional Medicine Strategy 2002–2005 2002 [WHO/EDM/TRM/2002.1]. [Internet]. [Cited: 16-Jan-2016]. Available at:: http://www. who. int/medicines/publications/traditional/policy/en/.
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012 Apr 16;2(2):303-36. doi: 10.3390/metabo2020303.
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj. 2013 Jun 1;1830(6):3670-95 doi: 10.1016/j.bbagen.2013.02.008.
Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005 Nov 1;26(5):343-56. doi: 10.1016/j.bbagen.2013.02.008.
Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, et al. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2001 Jun 1;126(2):524-35. doi: 10.1104/pp.126.2.524.
Lundstrom K. Unlocking the therapeutic potential of plant extracts. Fut. Med. Chem. 2016 Mar;8(3):245-8. doi: 10.4155/fmc-2015-0012.
Yahia EM, García-Solís P, Celis ME. Contribution of fruits and vegetables to human nutrition and health. Postharvest Biol. Technol. 2019 Jan 1 (pp. 19-45). Woodhead Publishing. doi: 10.1016/B978-0-12-813278-4.00002-6.
Wichansawakun S, Buttar HS. Antioxidant diets and functional foods promote healthy aging and longevity through diverse mechanisms of action. In: The role of functional food security in global health 2019 Jan 1 (pp. 541-563). Academic Press. doi: 10.1016/B978-0-12-813148-0.00032-3.
Martens S, Preuß A, Matern U. Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry. 2010 Jul 1;71(10):1040-9. doi: 10.1016/j.phytochem.2010.04.016.
Du GH. Natural small molecule drugs from plants. Berlin/Heidelberg, Germany: Springer; 2018 Nov 19 doi: 10.1007/978-981-10-8022-7.
Kumar A, Lalitha S, Mishra J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J Pharmacol. 2014 May 1;46(3):309-15. doi: 10.4103/0253-7613.132180.
Kumar A, Lalitha S, Mishra J. Possible nitric oxide mechanism in the protective effect of hesperidin against pentylenetetrazole (PTZ)-induced kindling and associated cognitive dysfunction in mice. Epilepsy Behav. 2013 Oct 1;29(1):103-11. doi: 10.1016/j.yebeh.2013.06.007.
Stafstrom CE, Sasaki-Adams DM. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res. 2003 Feb 1;53(1-2):129-37. doi: 10.1016/S0920-1211(02)00258-9.
Martínez MC, Fernandez SP, Loscalzo LM, Wasowski C, Paladini AC, Marder M, et al. Hesperidin, a flavonoid glycoside with sedative effect, decreases brain pERK1/2 levels in mice. Pharmacol Biochem Behav. 2009 Apr 1;92(2):291-6. doi: 10.1016/j.pbb.2008.12.016.
Loscalzo LM, Wasowski C, Paladini AC, Marder M. Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines. Eur J Pharmacol. 2008 Feb 12;580(3):306-13. doi: 10.1016/j.ejphar.2007.11.011.
Guzmán-Gutiérrez SL, Navarrete A. Pharmacological exploration of the sedative mechanism of hesperidin identified as the active principle of Citrus sinensis flowers. Planta Med. 2009 Mar;75(04):295-301. doi: 10.1055/s-0029-1185306.
Antunes MS, Goes AT, Boeira SP, Prigol M, Jesse CR. Protective effect of hesperidin in a model of Parkinson's disease induced by 6-hydroxydopamine in aged mice. Nutrition. 2014 Nov 1;30(11-12):1415-22. doi: 10.1016/j.nut.2014.03.024.
Santos G, Giraldez-Alvarez LD, Ávila-Rodriguez M, Capani F, Galembeck E, Neto AG, et al. SUR1 receptor interaction with hesperidin and linarin predicts possible mechanisms of action of Valeriana officinalis in Parkinson. Front Aging Neurosci. 2016 May 2;8:97. doi: 10.3389/fnagi.2016.00097.
Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Prasad NR, Karthikeyan S, et al. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone‐induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid. Med. Cell. Longev. 2013;2013(1):102741. doi: 10.1155/2013/102741.
Poetini MR, Araujo SM, de Paula MT, Bortolotto VC, Meichtry LB, de Almeida FP, et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson's disease. Chem Biol Interact. 2018 Jan 5;279:177-86. doi: 10.1016/j.cbi.2017.11.018.
Wang D, Liu L, Zhu X, Wu W, Wang Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell Mol Neurobiol. 2014 Nov;34:1209-21. doi: 10.1007/s10571-014-0098-x.
Thenmozhi AJ, Raja TR, Janakiraman U, Manivasagam T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res. 2015 Apr;40:767-76. doi: 10.1007/s11064-015-1525-1.
Huang SM, Tsai SY, Lin JA, Wu CH, Yen GC. Cytoprotective effects of hesperetin and hesperidin against amyloid β‐induced impairment of glucose transport through downregulation of neuronal autophagy. Mol Nutr Food Res. 2012 Apr;56(4):601-9. doi: 10.1002/mnfr.201100682.
Huang SM, Tsai SY, Lin JA, Wu CH, Yen GC. Cytoprotective effects of hesperetin and hesperidin against amyloid β‐induced impairment of glucose transport through downregulation of neuronal autophagy. Mol Nutr Food Res. 2012 Apr;56(4):601-9. doi: 10.1002/mnfr.201100682.
Chakraborty S, Bandyopadhyay J, Chakraborty S, Basu S. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics. Eur J Med Chem. 2016 Oct 4;121:810-22. doi: 10.1016/j.ejmech.2016.03.057.
Kawakami M, Iwanami J, Tsukuda K, Higaki A, Min LJ, Mogi M, et al. Abstract P332: Hesperidin in citrus fruit juice plays a role in preventing cognitive impairment induced by ischemic brain damage. Hypertension. 2018 Sep;72(Suppl_1):AP332-. doi: 10.1161/hyp.72.suppl_1.P332.
Vabeiryureilai M, Lalrinzuali K, Jagetia G. Determination of anti-inflammatory and analgesic activities of a citrus bioflavanoid, hesperidin in mice. Immunochem Immunopathol. 2015;1(107):2. doi: 10.4172/icoa.1000107.
Loscalzo LM, Yow TT, Wasowski C, Chebib M, Marder M. Hesperidin induces antinociceptive effect in mice and its aglicone, hesperetin, binds to μ-opioid receptor and inhibits GIRK1/2 currents. Pharmacol Biochem Behav. 2011 Sep 1;99(3):333-41. doi: 10.1016/j.pbb.2011.05.018.
Sakata K, Hirose Y, Qiao Z, Tanaka T, Mori H. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line. Cancer Lett. 2003 Sep 25;199(2):139-45. doi: 10.1016/S0304-3835(03)00386.
Mas-Capdevila A, Teichenne J, Domenech-Coca C, Caimari A, Del Bas JM, Escoté X, Crescenti A. Effect of hesperidin on cardiovascular disease risk factors: the role of intestinal microbiota on hesperidin bioavailability. Nutrients. 2020 May 20;12(5):1488. doi: 10.3390/nu12051488.
Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep. 2020 Jun 9;10(1):9362. doi: 10.1038/s41598-020-66419-6.
Zare M, Sarkati MN, Rahaiee S. Fabrication of nanoparticles based on hesperidin-loaded chitosan-functionalized Fe3O4: evaluation of in vitro antioxidant and anticancer properties. Macromol Res. 2021 Nov;29(11):785-90.
Korga-Plewko A, Michalczyk M, Adamczuk G, Humeniuk E, Ostrowska-Lesko M, Jozefczyk A, et al. Apigenin and hesperidin downregulate DNA repair genes in MCF-7 breast cancer cells and augment doxorubicin toxicity. Molecules. 2020 Sep 26;25(19):4421. doi: 10.3390/molecules25194421.
El‐Sisi AE, Sokkar SS, Ibrahim HA, Hamed MF, Abu‐Risha SE. Targeting MDR‐1 gene expression, BAX/BCL2, caspase‐3, and Ki‐67 by nanoencapsulated imatinib and hesperidin to enhance anticancer activity and ameliorate cardiotoxicity. Fundam Clin Pharmacol. 2020 Aug;34(4):458-75. doi: 10.1111/fcp.12549.
Choi SS, Lee SH, Lee KA. A comparative study of hesperetin, hesperidin and hesperidin glucoside: Antioxidant, anti-inflammatory, and antibacterial activities in vitro. Antioxidants. 2022 Aug 20;11(8):1618. doi: 10.3390/antiox11081618.
Li X, Huang W, Tan R, Xu C, Chen X, Li S, et al. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect. Biomed Pharmacother. 2023 Mar 1;159:114222. doi: 10.1016/j.biopha.2023.114222.
Haghmorad D, Mahmoudi MB, Salehipour Z, Jalayer Z, Rastin M, Kokhaei P, et al. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. J Neuroimmunol. 2017 Jan 15;302:23-33. doi: 10.1016/j.jneuroim.2016.11.009.
Kandeil MA, Gomaa SB, Mahmoud MO. The effect of some natural antioxidants against cisplatin-induced neurotoxicity in rats: behavioral testing. Heliyon. 2020 Aug 1;6(8). doi: 10.1016/j.heliyon.2020.e04708.
Kamisli S, Ciftci O, Kaya K, Cetin A, Kamisli O, Ozcan C. Hesperidin protects brain and sciatic nerve tissues against cisplatin-induced oxidative, histological and electromyographical side effects in rats. Toxicol Ind Health. 2015 Sep;31(9):841-51. doi: 10.1177/0748233713483192.
Aljelehawy QH, Mohammadi S, Mohamadian E, Raji Mal Allah O, Mirzaei A, Ghahremanlou M. Antimicrobial, anticancer, antidiabetic, antineurodegenerative, and antirheumatic activities of thymol: clarification of mechanisms. Micro Nano Bio Aspects. 2023 Mar 1;2(1):1-7. doi: 10.22034/mnba.2023.381107.1019.
Alavi M, Hamblin MR, Kennedy JF. Antimicrobial applications of lichens: secondary metabolites and green synthesis of silver nanoparticles: a review. Nano Micro Biosyst. 2022 Sep 1;1(1):15-21. doi: 10.22034/nmbj.2022.159216.
Alavi M, Rai M, Menezes IA. Therapeutic applications of lactic acid bacteria based on the nano and micro biosystems. Nano Micro Biosyst. 2022 Sep 1;1(1):8-14. doi: 10.22034/nmbj.2022.157850.
Zhao ZY, Li PJ, Xie RS, Cao XY, Su DL, Shan Y. Biosynthesis of silver nanoparticle composites based on hesperidin and pectin and their synergistic antibacterial mechanism. Int J Biol Macromol. 2022 Aug 1;214:220-9. doi: 10.1016/j.ijbiomac.2022.06.048.
Karayıldırım ÇK. Characterization and in vitro evolution of antibacterial efficacy of novel hesperidin microemulsion. Celal Bayar Univ J Sci. 2017;13(4):943-7.
Mucsi I, Pragai BM. Inhibition of virus multiplication and alteration of cyclic AMP level in cell cultures by flavonoids. Experientia. 1985 Jul;41:930-1. doi: 10.1186/s12906-022-03578-1.
Mekni‐Toujani M, Mousavizadeh L, Gallo A, Ghram A. Thymus capitatus flavonoids inhibit infection of Kaposi's sarcoma‐associated herpesvirus. FEBS Open bio. 2022 Jun;12(6):1166-77. doi: 10.1002/2211-5463.13407.
Cheng FJ, Huynh TK, Yang CS, Hu DW, Shen YC, Tu CY, et al. Hesperidin is a potential inhibitor against SARS-CoV-2 infection. Nutrients. 2021 Aug 16;13(8):2800. doi: 10.3390/nu13082800.
Kumar S, Paul P, Yadav P, Kaul R, Maitra SS, Jha SK, Chaari A. A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Comput Biol Med. 2022 Mar 1;142:105231. doi: 10.1016/j.compbiomed.2022.105231.
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020 May 1;10(5):766-88. doi: 10.1016/j.apsb.2020.02.008.
Heo SD, Kim J, Choi Y, Ekanayake P, Ahn M, Shin T. Hesperidin improves motor disability in rat spinal cord injury through anti-inflammatory and antioxidant mechanism via Nrf-2/HO-1 pathway. Neurosci Lett. 2020 Jan 10;715:134619. doi: 10.1016/j.neulet.2019.134619.
Carević T, Kostić M, Nikolić B, Stojković D, Soković M, Ivanov M. Hesperetin—between the ability to diminish mono-and polymicrobial biofilms and toxicity. Molecules. 2022 Oct 11;27(20):6806. doi: 10.3390/molecules27206806.
Ortuño A, Báidez A, Gómez P, Arcas MC, Porras I, García-Lidón A, et al. Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chem. 2006 Jan 1;98(2):351-8. doi: 10.1016/j.foodchem.2005.06.017.
Salas MP, Céliz G, Geronazzo H, Daz M, Resnik SL. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem. 2011 Feb 15;124(4):1411-5. doi: 10.1016/j.foodchem.2010.07.100.
Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, et al. Phytochemical properties, extraction, and pharmacological benefits of naringin: a review. Molecules. 2023 Jul 25;28(15):5623. doi: 10.3390/molecules28155623.
Fadholly A, Ansori AN, Sucipto TH. An overview of naringin: Potential anticancer compound of citrus fruits. Res J Pharm Technol. 2020 Nov 13;13(11):5613-9. doi: 10.5958/0974-360X.2020.00979.8.
Huang J, Lu YJ, Guo C, Zuo S, Zhou JL, Wong WL, Huang B. The study of citrus‐derived flavonoids as effective bitter taste inhibitors. J Sci Food Agric. 2021 Sep;101(12):5163-71. doi: 10.1002/jsfa.1116.
Ahirwar R, Chaurasia A, Adhikari P, Kankane M. Formulation and In vitro characterization of the sustained release liposphere containing flavonoid Naringin. World J Biol Pharm Health Sci. 2023;15(3):166-77. doi: 10.30574/wjbphs.2023.15.3.0396.
Bhia M, Motallebi M, Abadi B, Zarepour A, Pereira-Silva M, Saremnejad F, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics. 2021 Feb 23;13(2):291. doi: 10.3390/pharmaceutics13020291.
Oliveira PV, Aguiar GP, Siebel AM, Müller LG, Lerin LA, Botti G, et al. Synthesis of naringenin-betaine cocrystal by gas antisolvent technique and cell models for in vitro permeation studies. J Drug Deliv Sci Technol. 2024 Jun 1;96:105671. doi: 10.1016/j.jddst.2024.105671.
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, et al. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon. 2023 Jun 1;9(6). doi: 10.1016/j.heliyon.2023.e17166.
Naraki K, Rezaee R, Karimi G. A review on the protective effects of naringenin against natural and chemical toxic agents. Phytother Res. 2021 Aug;35(8):4075-91. doi: 10.1002/ptr.7071.
Rao MJ, Wu S, Duan M, Wang L. Antioxidant metabolites in primitive, wild, and cultivated citrus and their role in stress tolerance. Molecules. 2021 Sep 24;26(19):5801. doi: 10.3390/molecules26195801.
Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016 Dec 1;54(12):3203-10. doi: 10.1080/13880209.2016.1216131.
Ravetti S, Garro AG, Gaitán A, Murature M, Galiano M, Brignone SG, Palma SD. Naringin: nanotechnological strategies for potential pharmaceutical applications. Pharmaceutics. 2023 Mar 7;15(3):863. doi: 10.3390/pharmaceutics15030863.
Yi L, Ma S, Ren D. Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem Rev. 2017 Jun;16:479-511. doi: 10.1007/s11101-017-9497-1.
Salehi B, Fokou PV, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, Sharifi-Rad J. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019 Jan 10;12(1):11. doi: 10.3390/ph12010011.
Zeng X, Su W, Liu B, Chai L, Shi R, Yao H. A review on the pharmacokinetic properties of naringin and its therapeutic efficacies in respiratory diseases. Mini Rev Med Chem. 2020 Mar 1;20(4):286-93. doi: 10.2174/1389557519666191009162641.
Ren X, Shi Y, Zhao D, Xu M, Li X, Dang Y, Ye X. Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway. J Dermatol Sci. 2016 May 1;82(2):106-14. doi: 10.1016/j.jdermsci.2015.12.008.
Zhao Y, Liu S. Bioactivity of naringin and related mechanisms. Die Pharmazie. 2021 Aug 1;76(8):359-63. doi: 10.1691/ph.2021.1504.
Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines. 2022 Jul 13;10(7):1686. doi: 10.3390/biomedicines10071686.
Rauf A, Shariati MA, Imran M, Bashir K, Khan SA, Mitra S, et al. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environ Sci Pollut Res. 2022 May;29(21):31025-41. doi: 10.1007/s11356-022-18754-6.
Memariani Z, Abbas SQ, Ul Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res. 2021 Sep 1;171:105264. doi: 10.1016/j.phrs.2020.105264.
Memariani Z, Abbas SQ, Ul Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res. 2021 Sep 1;171:105264. doi: 10.7150%2Fijms.44804.
Kocyigit A, Koyuncu I, Dikilitas M, Bahadori F, Turkkan B. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines. Asian Pac J Trop Biomed. 2016 Oct 1;6(10):872-80. doi: 10.1016/j.apjtb.2016.08.004.
Latif AD, Gonda T, Vágvölgyi M, Kúsz N, Kulmány Á, Ocsovszki I, et al. Synthesis and in vitro antitumor activity of naringenin oxime and oxime ether derivatives. Int J Mol Sci. 2019 May 2;20(9):2184. doi: 10.3390/ijms20092184.
Zochedh A, Chandran K, Priya M, Sultan AB, Kathiresan T. Molecular simulation of naringin combined with experimental elucidation–Pharmaceutical activity and Molecular docking against Breast cancer.J Mol Struct. 2023 Aug 5;1285:135403. doi: 10.1016/j.molstruc.2023.135403.
Noori S, Tavirani MR, Deravi N, Rabbani MI, Zarghi A. Naringenin enhances the anti-cancer effect of cyclophosphamide against MDA-MB-231 breast cancer cells via targeting the STAT3 signaling pathway. IJPR. 2020;19(3):122. doi: 10.22037%2Fijpr.2020.113103.14112.
Yıldırım M, Acet Ö, Yetkin D, Acet BÖ, Karakoc V, Odabası M. Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer. J Drug Deliv Sci Technol. 2022 Aug 1;74:103552. doi: 10.1016/j.jddst.2022.103552.
Hermawan A, Ikawati M, Jenie RI, Khumaira A, Putri H, Nurhayati IP, et al. Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharm J. 2021 Jan 1;29(1):12-26. doi: 10.1016/j.jsps.2020.12.002.
Dayarathne LA, Ranaweerae SS, Natraj P, Rajan P, Song KJ, Yang GH, Han CH. Anti-diabetic and anti-obesity potentials of naringin and naringenin. In: Proceedings of the Conf Korean Soc Exp Anim. 2020 Jul (Vol. 183). doi: 10.13140/RG.2.2.25037.67042.
Rath D, Kar B, Pattnaik G. Preventive role of naringin in diabetes mellitus and its mechanism of action: A review. Plant Arch. 2020;20(2):7806-12.
Maity S, Chakraborti AS. Formulation, physico-chemical characterization and antidiabetic potential of naringenin-loaded poly D, L lactide-co-glycolide (N-PLGA) nanoparticles. Eur Polym J. 2020 Jul 5;134:109818. doi: 10.1016/j.eurpolymj.2020.109818.
Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh‐Attar MJ. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID‐19. Phytother Res. 2020 Dec;34(12):3137-47. doi: 10.1002/ptr.6781.
Gelen V, Şengül E. Antioxidant, anti-inflammatory and antiapoptotic effects of Naringin on cardiac damage induced by cisplatin. Indian J Tradit Knowl (IJTK). 2020 May 15;19(2):459-65. IPC Code: Int. Cl.20: A61K 39/395, C12N 9/14, A61K 39/395.
Hassan RA, Hozayen WG, Abo Sree HT, Al-Muzafar HM, Amin KA, Ahmed OM. Naringin and hesperidin counteract diclofenac‐induced hepatotoxicity in male wistar rats via their antioxidant, anti‐inflammatory, and antiapoptotic activities. Oxid Med Cell Longev. 2021;2021(1):9990091. doi: 10.1155/2021/9990091.
Yadav M, Sehrawat N, Singh M, Upadhyay SK, Aggarwal D, Sharma AK. Cardioprotective and hepatoprotective potential of citrus flavonoid naringin: Current status and future perspectives for health benefits. Asian J. Biol. Life Sci. 2020 Jan;9(1):1-5. doi :10.5530/ajbls.2020.9.1.
Koroglu OF, Gunata M, Vardi N, Yildiz A, Ates B, Colak C, et al. Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue Cell. 2021 Oct 1;72:101526. doi: 10.1016/j.tice.2021.101526.
Hassan RA, Hozayen WG, Abo Sree HT, Al-Muzafar HM, Amin KA, Ahmed OM. Naringin and hesperidin counteract diclofenac‐induced hepatotoxicity in male wistar rats via their antioxidant, anti‐inflammatory, and antiapoptotic activities. Oxid Med Cell Longev. 2021;2021(1):9990091. doi: 10.1155/2021/9990091.
Hassan RA, Hozayen WG, Abo Sree HT, Al-Muzafar HM, Amin KA, Ahmed OM. Naringin and hesperidin counteract diclofenac‐induced hepatotoxicity in male wistar rats via their antioxidant, anti‐inflammatory, and antiapoptotic activities. Oxid Med Cell Longev. 2021;2021(1):9990091. doi: 10.1155/2021/9990091.
Duda-Madej A, Stecko J, Sobieraj J, Szymańska N, Kozłowska J. Naringenin and its derivatives—Health-promoting phytobiotic against resistant bacteria and fungi in humans. Antibiotics. 2022 Nov 15;11(11):1628. doi: 10.3390/antibiotics11111628.
Purewal SS, Sandhu KS. Debittering of citrus juice by different processing methods: A novel approach for food industry and agro-industrial sector. Scientia Hortic. 2021 Jan 27;276:109750. doi: 10.1016/j.scienta.2020.109750.
Yang Y, Trevethan M, Wang S, Zhao L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem. 2022 Jun 1;104:108967. doi: 10.1016/j.jnutbio.2022.108967.
Wen QH, Wang R, Zhao SQ, Chen BR, Zeng XA. Inhibition of biofilm formation of foodborne Staphylococcus aureus by the citrus flavonoid naringenin. Foods. 2021 Oct 28;10(11):2614. doi: 10.3390/foods10112614.
Niu D, Ren EF, Li J, Zeng XA, Li SL. Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin. Sep Purif Technol. 2021 Jun 15;265:118480. doi: 10.1016/j.seppur.2021.118480.
Sharma A, Bhardwaj P, Arya SK. Naringin: A potential natural product in the field of biomedical applications. Carbohydr Polym Technol Appl. 2021 Dec 25;2:100068. doi: 10.1016/j.carpta.2021.100068.
Stabrauskiene J, Marksa M, Ivanauskas L, Bernatoniene J. Optimization of naringin and naringenin extraction from Citrus× paradisi L. using hydrolysis and excipients as adsorbent. Pharmaceutics. 2022 Apr 19;14(5):890. doi: 10.3390/pharmaceutics14050890.
Jiménez-Ocampo R, Montoya-Flores MD, Herrera-Torres E, Pámanes-Carrasco G, Arceo-Castillo JI, Valencia-Salazar SS, et al. Effect of chitosan and naringin on enteric methane emissions in crossbred heifers fed tropical grass. Animals. 2021 May 28;11(6):1599. doi: 10.3390/ani11061599.
Wang Q, Wang J, Qi RL, Qiu XY, Sun Q, Huang JX. Naringin supplementation affects performance, carcass traits, meat quality and oxidative stability of finishing pigs. S Afr J Anim Sci. 2020 Apr 20;50(1):78-87. doi: 10.4314/sajas.v50i1.9.
Bao T, Yao J, Zhou S, Ma Y, Dong J, Zhang C, Mi Y. Naringin prevents follicular atresia by inhibiting oxidative stress in the aging chicken. Poult Sci. 2022 Jul 1;101(7):101891. doi: 10.1016/j.psj.2022.101891.
Singh B, Singh JP, Kaur A, Singh N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int. 2020 Jun 1;132:109114. doi: 10.1016/j.foodres.2020.109114.
Santos AC, Marto J, Chá-Chá R, Martins AM, Pereira-Silva M, Ribeiro HM, Veiga F. Nanotechnology-based sunscreens—a review. Mater Today Chem. 2022 Mar 1;23:100709. doi: 10.1016/j.mtchem.2021.100709.
Gollavilli H, Hegde AR, Managuli RS, Bhaskar KV, Dengale SJ, Reddy MS, et al. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surf B Biointerfaces. 2020 Sep 1;193:111122. doi: 10.1016/j.colsurfb.2020.111122.
Liyanaarachchi C, Napagoda M, Witharana S, Jayasinghe L. 8 Photoprotective potential in medicinal plants. In: Napagoda M, ed. Chemistry of natural products, phytochemistry and pharmacognosy of medicinal plants. Berlin: De Gruyter. pp. 157. doi: 10.1515/9783110595949-008.
Akamo AJ, Rotimi SO, Akinloye DI, Ugbaja RN, Adeleye OO, Dosumu OA, et al. Naringin prevents cyclophosphamide-induced hepatotoxicity in rats by attenuating oxidative stress, fibrosis, and inflammation. Food Chem Toxicol. 2021 Jul 1;153:112266. doi: 10.1016/j.fct.2021.112266.
Zhang K, Ding Z, Duan W, Mo M, Su Z, Bi Y, Kong F. Optimized preparation process for naringenin and evaluation of its antioxidant and α‐glucosidase inhibitory activities. J Food Process Preserv. 2020 Dec;44(12):e14931. doi: 10.1111/jfpp.14931.
Ghanbari-Movahed M, Jackson G, Farzaei MH, Bishayee A. A systematic review of the preventive and therapeutic effects of naringin against human malignancies. Front Pharmacol. 2021 Mar 29;12:639840. doi: 10.3389/fphar.2021.639840.
Moghaddam RH, Samimi Z, Moradi SZ, Little PJ, Xu S, Farzaei MH. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. Eur J Pharmacol. 2020 Nov 15;887:173535. doi: 10.1016/j.ejphar.2020.173535.
Raja Kumar S, Mohd Ramli ES, Abdul Nasir NA, Ismail NH, Mohd Fahami NA. Preventive effect of naringin on metabolic syndrome and its mechanism of action: A systematic review. Evid Based Complement Alternat Med. 2019;2019(1):9752826. doi: 10.1155/2019/9752826.
Zeng X, Su W, Liu B, Chai L, Shi R, Yao H. A review on the pharmacokinetic properties of naringin and its therapeutic efficacies in respiratory diseases. Mini Rev Med Chem. 2020 Mar 1;20(4):286-93. doi: 10.2174/1389557519666191009162641.
Ahmed S, Khan H, Aschner M, Hasan MM, Hassan ST. Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol. 2019 Oct 1;132:110646. doi: 10.1016/j.fct.2019.110646.
Yang Y, Trevethan M, Wang S, Zhao L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms. J Nutr Biochem. 2022 Jun 1;104:108967. doi: 10.1016/j.jnutbio.2022.108967.
Miles EA, Calder PC. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: a narrative review. Front Immunol. 2021 Jun 24;12:712608. doi: 10.3389/fimmu.2021.712608.
Shulman M, Cohen M, Soto-Gutierrez A, Yagi H, Wang H, Goldwasser J, et al. Enhancement of naringenin bioavailability by complexation with hydroxypropoyl-β-cyclodextrin. PloS one. 2011 Apr 6;6(4):e18033. doi: 10.1371/journal.pone.0018033.
Wang MJ, Chao PD, Hou YC, Hsiu SL, Wen KC, Tsai SY. Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations. J Food Drug Anal. 2006;14(3):4. doi: 10.38212/2224-6614.246.
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005 Jan 1;81(1):230S-42S. doi: 10.1093/ajcn/81.1.230S.
Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med. 2004 Apr 1;36(7):829-37. doi: 10.1016/j.freeradbiomed.2004.01.002.
Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr. 2017 Jan 1;105(1):10-22. doi: 10.3945/ajcn.116.136051.
Rao K, Imran M, Jabri T, Ali I, Perveen S, Ahmed S, et al. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM. Carbohydr Polym. 2017 Oct 15;174:243-52. doi: 10.1016/j.carbpol.2017.06.071.
Roy AS, Tripathy DR, Chatterjee A, Dasgupta S. A spectroscopic study of the interaction of the antioxidant naringin with bovine serum albumin. J Biophys Chem. 2010;1(03):141-52. doi: 10.4236/jbpc.2010.13017.
Santo VE, Gomes ME, Mano JF, Reis RL. From nano-to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine. 2012 Jul 1;7(7):1045-66. doi: 10.2217/nnm.12.78.
Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009 Jun 1;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004.
Lavrador P, Gaspar VM, Mano JF. Bioinstructive naringin‐loaded micelles for guiding stem cell osteodifferentiation. Adv Healthc Mater. 2018 Oct;7(19):1800890. doi: 10.1002/adhm.201800890.
Pleguezuelos-Villa M, Mir-Palomo S, Díez-Sales O, Buso MO, Sauri AR, Nácher A. A novel ultradeformable liposomes of Naringin for anti-inflammatory therapy. Colloids Surf B Biointerfaces. 2018 Feb 1;162:265-70. doi: 10.1016/j.colsurfb.2017.11.068.
Mohanty S, Sahoo AK, Konkimalla VB, Pal A, Si SC. Naringin in combination with isothiocyanates as liposomal formulations potentiates the anti-inflammatory activity in different acute and chronic animal models of rheumatoid arthritis. ACS omega. 2020 Oct 26;5(43):28319-32. doi: 10.1021/acsomega.0c04300.
Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, et al. Aerosol delivery of surfactant liposomes for management of pulmonary fibrosis: an approach supporting pulmonary mechanics. Pharmaceutics. 2021 Nov 3;13(11):1851. doi: 10.3390/pharmaceutics13111851.
Turgut NH, Kara H, Elagoz S, Deveci K, Gungor H, Arslanbas E. The protective effect of naringin against bleomycin‐induced pulmonary fibrosis in Wistar rats. Pulm Med. 2016;2016(1):7601393. doi: 10.1155/2016/7601393.
Zheng CY, Chu XY, Gao CY, Hu HY, He X, Chen X, Yang K, Zhang DL. TAT&RGD peptide-modified naringin-loaded lipid nanoparticles promote the osteogenic differentiation of human dental pulp stem cells. Int J Nanomed. 2022;17:3269. doi: 10.2147%2FIJN.S371715.
Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed Rep. 2016 May 1;4(5):528-34. doi: 10.3892/br.2016.639.
Yang M, Zhang ZC, Liu Y, Chen YR, Deng RH, Zhang ZN, et al. Function and mechanism of RGD in bone and cartilage tissue engineering. Front Bioeng Biotechnol. 2021 Dec 15;9:773636. doi: 10.3389/fbioe.2021.773636.
Gollavilli H, Hegde AR, Managuli RS, Bhaskar KV, Dengale SJ, Reddy MS, et al. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surf B Biointerfaces. 2020 Sep 1;193:111122. doi: 10.1016/j.colsurfb.2020.111122.
Paiva-Santos AC, Silva AL, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, et al. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm. Res. 2021 Jun;38(6):947-70. doi: 10.1007/s11095-021-03053-5.
Kumari SD, Chevala NT, Jitta SR, Kumar L, Verma R, Jose J. Design and development of naringin‐loaded proposomal gel for wound healing. J Cosmet Dermatol. 2022 Oct;21(10):5187-202. doi: 10.1111/jocd.15029.
Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. PG‐liposomes: novel lipid vesicles for skin delivery of drugs. J Pharm Pharmacol 2007 Oct;59(10):1447-50. doi: 10.1211/jpp.59.10.0017.
Kathuria H, Handral HK, Cha S, Nguyen DT, Cai J, Cao T, Wu C, Kang L. Enhancement of skin delivery of drugs using proposome depends on drug lipophilicity. Pharmaceutics. 2021 Sep 13;13(9):1457. doi: 10.3390/pharmaceutics13091457.
Perumal S, Atchudan R, Lee W. A review of polymeric micelles and their applications. Polymers. 2022 Jun 20;14(12):2510. doi: 10.3390/polym14122510.
Mohamed EA, Abu Hashim II, Yusif RM, Shaaban AA, El-Sheakh AR, Hamed MF, et al. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. Int J Nanomed. 2018 Feb 19:1009-27. doi: 10.2147/IJN.S154325.
Jabri T, Imran M, Aziz A, Rao K, Kawish M, Irfan M, et al. Design and synthesis of mixed micellar system for enhanced anticancer efficacy of Paclitaxel through its co-delivery with Naringin. Drug Dev Ind Pharm. 2019 May 4;45(5):703-14. doi: 10.1080/03639045.2018.1550091.
Castañeda AM, Meléndez CM, Uribe D, Pedroza-Díaz J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: Recent insights for the development of cancer treatment strategies. Heliyon. 2022 Jun 1;8(6). doi: 10.1016/j.heliyon.2022.e09519.
Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J Drug Deliv Sci Technol. 2019 Jun 1;51:255-67. doi: 10.1016/j.jddst.2019.02.017.
Formica ML, Gamboa GU, Tártara LI, Luna JD, Benoit JP, Palma SD. Triamcinolone acetonide-loaded lipid nanocapsules for ophthalmic applications. Int. J. Pharm. 2020 Jan 5;573:118795. doi: 10.1016/j.ijpharm.2019.118795.
Formica ML, Legeay S, Bejaud J, Montich GG, Gamboa GV, Benoit JP, et al. Novel hybrid lipid nanocapsules loaded with a therapeutic monoclonal antibody–Bevacizumab–and Triamcinolone acetonide for combined therapy in neovascular ocular pathologies. Mater Sci Eng C. 2021 Feb 1;119:111398. doi: 10.1016/j.msec.2020.111398.
Alhalmi A, Amin S, Beg S, Al-Salahi R, Mir SR, Kohli K. Formulation and optimization of naringin loaded nanostructured lipid carriers using Box-Behnken based design: In vitro and ex vivo evaluation. J Drug Deliv Sci Technol. 2022 Aug 1;74:103590. doi: 10.1016/j.jddst.2022.103590.
Kumar A, Behl T, Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol. 2020 Apr 15;149:1262-74. doi: 10.1016/j.ijbiomac.2020.02.048.
Bhattacharya T, Soares GA, Chopra H, Rahman MM, Hasan Z, Swain SS, Cavalu S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials. 2022 Jan 21;15(3):804. doi: 10.3390/ma15030804.
Wang L, Zhao J, Mao Y, Liu L, Li C, Wu H, et al. Tartary buckwheat rutin: Accumulation, metabolic pathways, regulation mechanisms, and biofortification strategies. Plant Physiol Biochem. 2024 Mar 11:108503. doi: 10.1016/j.plaphy.2024.108503.
Sirotkin AV. Positive effects of rutin on female reproduction. Reprod Domest Anim. 2024 Feb;59(2):e14540. doi: 10.1111/rda.14540.
Liu H, Xu Q, Wufuer H, Li Z, Sun R, Jiang Z, et al. Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy. Aging Cell. 2024 Jan;23(1):e13921. doi: 10.1111/acel.13921.
Ding P, Yang K, Wang H, Kuang L, Gao L, Luo J, et al. Exploring the therapeutic potential of rutin through investigating its inhibitory mechanism on lactate dehydrogenase: Multi-spectral methods and computer simulation. Bioorg. Chem. 2024 May 28:107503. doi: 10.1016/j.bioorg.2024.107503.
Duhan J, Obrai S. Sodium vanadates doped boron phosphorus graphene quantum dots: A novel nanosensor for the fluorescence detection of rutin. Food Chem. 2024 Dec 1;460:140630. doi: 10.1016/j.foodchem.2024.140630.
Guan P, Yu H, Wang S, Sun J, Chai X, Sun X, et al. Dietary rutin alleviated the damage by cold stress on inflammation reaction, tight junction protein and intestinal microbial flora in the mice intestine. J Nutr Biochem. 2024 Aug 1;130:109658. doi: 10.1016/j.jnutbio.2024.109658.
Li F, Li X, Dai S, Yang Z, Bao Z, Wang S, Zhang Z, Midgley AC, Fan M, Zhu MF, Dong X. Efficient Light-Based Bioprinting via Rutin Nanoparticle Photoinhibitor for Advanced Biomedical Applications. ACS nano. 2024 Aug 5;18(33):22104-21. doi: 10.1021/acsnano.4c05380.
Wang Q, Zhang Y, Lu R, Zhao Q, Gao Y. The multiple mechanisms and therapeutic significance of rutin in metabolic dysfunction-associated fatty liver disease (MAFLD). Fitoterapia. 2024 Aug 15:106178. doi: 10.1016/j.fitote.2024.106178.
Lai D, Zhang K, He Y, Fan Y, Li W, Shi Y, et al. Multi‐omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). Plant Biotechnol. J. 2024 May;22(5):1206-23
AbdElrazek DA, Hassan NH, Ibrahim MA, Hassanen EI, Farroh KY, Abass HI. Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food Chem. Toxicol. 2024 Feb 1;184:114436. doi: 10.1016/j.fct.2024.114436.
Wadher K, Trivedi S, Rarokar N, Umekar M. Development and assessment of rutin loaded transfersomes to improve ex vivo membrane permeability and in vitro efficacy. Hybrid Adv. 2024 Apr 1;5:100144. doi: 10.1016/j.hybadv.2024.100144.
Karunarathne WA, Lee KT, Choi YH, Kang CH, Lee MH, Kim SH, Kim GY. Investigating rutin as a potential transforming growth factor‐β type I receptor antagonist for the inhibition of bleomycin‐induced lung fibrosis. BioFactors. 2024 May;50(3):477-92. doi: 10.1002/biof.2020.
Silva-Weiss A, Quilaqueo M, Venegas O, Ahumada M, Silva W, Osorio F, Giménez B. Design of dipalmitoyl lecithin liposomes loaded with quercetin and rutin and their release kinetics from carboxymethyl cellulose edible films. J. Food Eng. 2018 May 1;224:165-73. doi: 10.1016/j.jfoodeng.2018.01.001.
Germ M, Árvay J, Vollmannová A, Tóth T, Golob A, Luthar Z, Kreft I. The temperature threshold for the transformation of rutin to quercetin in Tartary buckwheat dough. Food Chem. 2019 Jun 15;283:28-31. doi: 10.1016/j.foodchem.2011.12.065.
Yoo J, Kim Y, Yoo SH, Inglett GE, Lee S. Reduction of rutin loss in buckwheat noodles and their physicochemical characterisation. Food Chem. 2012 Jun 15;132(4):2107-11. doi: 10.1016/j.foodchem.2011.12.065.
Capitani CD, Hatano MK, Marques MF, Castro IA. Effects of optimized mixtures containing phenolic compounds on the oxidative stability of sausages. Food Sci Technol Int. 2013 Feb;19(1):69-77. doi: 10.1177/1082013212442184.
Hęś M, Szwengiel A, Dziedzic K, Le Thanh‐Blicharz J, Kmiecik D, Górecka D. The effect of buckwheat hull extract on lipid oxidation in frozen‐stored meat products. J. Food Sci. 2017 Apr;82(4):882-9. doi: 10.1016/j.carbpol.2017.04.044.
Přikryl J, Hájek T, Švecová B, Salek RN, Černíková M, Červenka L, et al. Antioxidant properties and textural characteristics of processed cheese spreads enriched with rutin or quercetin: The effect of processing conditions. Lwt. 2018 Jan 1;87:266-71. doi: 10.1016/j.lwt.2017.08.093.
Babazadeh A, Ghanbarzadeh B, Hamishehkar H. Novel nanostructured lipid carriers as a promising food grade delivery system for rutin. J Funct Foods. 2016 Oct 1;26:167-75. doi: 10.1016/j.jff.2016.07.017.
Tomazelli LC, de Assis Ramos MM, Sauce R, Cândido TM, Sarruf FD, de Oliveira Pinto CA, et al. SPF enhancement provided by rutin in a multifunctional sunscreen. Int. J Pharm. 2018 Dec 1;552(1-2):401-6. doi: 10.1016/j.ijpharm.2018.10.015.
Gęgotek A, Bielawska K, Biernacki M, Dobrzyńska I, Skrzydlewska E. Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation. Redox Biol. 2017 Aug 1;12:733-44. doi: 10.1016/j.redox.2017.04.014.
Peres DA, De Oliveira CA, Da Costa MS, Tokunaga VK, Mota JP, Rosado C, Consiglieri VO, et al. Rutin increases critical wavelength of systems containing a single UV filter and with good skin compatibility. Skin Res. Technol. 2016 Aug;22(3):325-33. doi: 10.1111/srt.12265.
de Oliveira CA, Peres DD, Graziola F, Chacra NA, de Araújo GL, Florido AC, et al. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur. J. Pharm. Sci. 2016 Jan 1;81:1-9. doi: 10.1016/j.ejps.2015.09.016.
Kumar D, Jamwal A, Madaan R, Kumar S. Estimation of total phenols and flavonoids in selected Indian traditional plants. doi: 10.15415/jptrm.2014.21006.
Arora S, Kaur P. Preparation and characterization of phytosomal-phospholipid complex of p. amarus and its tablet formulation. doi: 10.15415/jptrm.2013.11001.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
