Advances in Genetic Research in Systemic Lupus Erythematosus: Trend Analysis, Global Collaborations and Bibliometric Perspectives

Keywords: Lupus erythematosus, systemic, Bibliometrics, Genomics

Abstract


Systemic lupus erythematosus (SLE) is a complex autoimmune disease affecting multiple organs and systems in the body. SLE manifestations result from lymphopenia, thrombotic thrombocytopenic purpura, thrombocytopaenia, autoimmune haemolytic anaemia, myelofibrosis and leucopoenia. SLE triggers the activation of both innate and adaptive immune responses. This process is initiated by T cells activating autoreactive B cells, leading to the accumulation of immune complexes in tissues. Consequently, an autoimmune cascade occurs, which can either affect a single organ or cause widespread systemic complications. Bibliometric analysis used Vosviewer 1.6.16 and the Biblioshiny R tool to create and display bibliometric maps by obtaining relevant journals related to SLE through the SciVerse Scopus database from 1981 to 2025. The results obtained in the form of journal document types using English with keywords in the form of SLE which shows globally. The United States is the country that produces the most research related to SLE genomics and the highest publication collaboration along with contributing citations at the global first level. Lupus was the journal source that discusses the most genomic studies in SLE disease and Anhui Medical University was the most data affiliation of 131 documents. The increasing number of publications on genomics in SLE from 1981 to 2025 indicates a growing interest in researching and writing about this topic. This trend reflects the evolving understanding of SLE's genetic underpinnings and the potential for advancements in diagnosis, treatment and precision medicine.

References

Yao M, Zhang C, Gao C, Wang Q, Dai M, Yue R, et al. Exploration of the shared gene signatures and molecular mechanisms between systemic lupus erythematosus and pulmonary arterial hypertension: evidence from transcriptome data. Front Immunol. 2021;12(July):1–13. doi: 10.3389/fimmu.2021.658341.

Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515–32. doi: 10.1038/s41584-021-00690-3.

Fayyaz A, Igoe A, Kurien BT, Danda D, James JA, Stafford HA, et al. Haematological manifestations of lupus. Lupus Sci Med. 2015;2(1). doi: 10.1136/lupus-2014-000078.

Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory effects of diet and nutrients in systemic lupus erythematosus (SLE): a systematic review. Front Immunol. 2020;11(July):1–17. doi: 10.3389/fimmu.2020.01477.

Jenks SA, Cashman KS, Woodruff MC, Lee FEH, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1):136–48. doi: 10.1111/imr.12741.

Chalmers SA, Ramachandran RA, Garcia SJ, Der E, Herlitz L, Ampudia J, et al. The CD6/ALCAM pathway promotes lupus nephritis via T cell–mediated responses. J Clin Invest. 2022;132(1). doi: 10.1172/JCI147334.

Nakayamada S, Saito K, Nakano K, Tanaka Y. Activation signal transduction by β1 integrin in T cells from patients with systemic lupus erythematosus. Arthritis Rheum. 2007;56(5):1559–68. doi: 10.1002/art.22581.

Kirou KA, Dall`Era M, Aranow C, Anders HJ. Belimumab or anifrolumab for systemic lupus erythematosus? A risk-benefit assessment. Front Immunol. 2022;13(August):1–12. doi: 10.3389/fimmu.2022.980079.

Basta F, Fasola F, Triantafyllias K, Schwarting A. Systemic Lupus Erythematosus (SLE) Therapy: The Old and the New. Rheumatol Ther. 2020;7(3):433–46. doi: 10.1007/s40744-020-00212-9. Epub 2020 Jun 2. PMID: 32488652; PMCID: PMC7410873.

Peng-Cheng L, Meng-Na L, Jian-Bin L, Shu-Jiao Y, Wu R. Advancements on the impact of hydroxychloroquine in systemic lupus erythematosus. Heliyon. 2024;10(9):e30393. doi: 10.1016/j.heliyon.2024.e30393.

Huang X, Jiang F, Ma Y, Zhu K, Wang Z, Hua Z, et al. A bibliometric analysis of endoplasmic reticulum stress and atherosclerosis. Front Physiol. 2024;15(June):1–20. doi: 10.3389/fphys.2024.1392454.

Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, et al. Knowledge mapping of exosomes in autoimmune diseases: a bibliometric analysis (2002–2021). Front Immunol. 2022;13(July):1–19. doi: 10.3389/fimmu.2022.939433.

Brandt JS, Hadaya O, Schuster M, Rosen T, Sauer MV, Ananth CV. A bibliometric analysis of top-cited journal articles in obstetrics and gynecology. JAMA Netw Open. 2019;2(12):E1918007. doi: 10.1001/jamanetworkopen.2019.18007.

Diane Cooper I. Bibliometrics basics. J Med Libr Assoc. 2015;103(4):217–8. doi: 10.3163/1536-5050.103.4.013.

Ke L, Lu C, Shen R, Lu T, Ma B, Hua Y. Knowledge mapping of drug-induced liver injury: a scientometric investigation (2010–2019). Front Pharmacol. 2020;11(June):1–14. doi: 10.3389/fphar.2020.00842.

Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–42. doi: 10.1096/fj.07-9492LSF.

Bakar A, Irham LM, Ningrum V. Publication trend on oral mucositis induced by chemotherapy 1978-2023: bibliometric analysis. Scr Medica. 2024;55(5):631–8. doi:10.5937/scriptamed55-51528.

van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–38. doi: 10.1007/s11192-009-0146-3.

Ai S, Li Y, Tao JY, Zheng H, Tian L, Wang Y, et al. Bibliometric visualization analysis of gut-kidney axis from 2003 to 2022. Front Physiol. 2023;14(June):1–21. doi: 10.3389/fphys.2023.1176894.

Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47(12):1457–64. doi: 10.1038/ng.3434.

Quan L, Dai J, Luo Y, Wang L, Liu Y, Meng J, et al. The 100 top-cited studies in systemic lupus erythematosus: A bibliometric analysis. Hum Vaccines Immunother. 2024;20(1):1–16. doi: 10.1080/21645515.2024.2387461.

Graham RR, Ortmann W, Rodine P, Espe K, Langefeld C, Lange E, et al. Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur J Hum Genet. 2007;15(8):823–30. doi: 10.1038/sj.ejhg.5201827.

Xue K, Niu WQ, Cui Y. Association of HLA-DR3 and HLA-DR15 Polymorphisms with risk of systemic lupus erythematosus. Chin Med J (Engl). 2018;131(23):2844–51. doi: 10.4103/0366-6999.246058.

Ostanek L, Ostanek-Pańka M, Bobrowska-Snarska D, Bińczak-Kuleta A, Fischer K, Kaczmarczyk M, et al. PTPN22 1858C>T gene polymorphism in patients with SLE: Association with serological and clinical results. Mol Biol Rep. 2014;41(9):6195–200. doi: 10.1007/s11033-014-3498-6.

Namjou B, Kim-Howard X, Sun C, Adler A, Chung SA, Kaufman KM, et al. PTPN22 Association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PLoS One. 2013;8(8). doi: 10.1371/journal.pone.0069404.

Rosetti F, De La Cruz A, Crispín JC. Gene-function studies in systemic lupus erythematosus. Curr Opin Rheumatol. 2019;31(2):185–92. doi: 10.1097/BOR.0000000000000572.

Lazzari E, Jefferies CA. IRF5-mediated signaling and implications for SLE. Clin Immunol. 2014;153(2):343–52. doi: 10.1016/j.clim.2014.06.001.

Sianu R, Irham LM. [Study trends related to ulcerative colitis and genomics from 2000-2023.] Lumbung Farm J Ilmu Kefarmasian. 2024;5(1):76. doi: 10.31764/lf.v5i1.17728. Indonesian.

Published
2025/10/31
Section
Current topic