Impact of Maternal Endocrine Health on Foetal Development and Pregnancy Outcomes
Abstract
Maternal endocrine health is an essential predictor of favourable pregnancy outcomes, regulating both foetal development and maternal well-being. Pregnancy relates to significant hormonal changes that promote maternal-foetal connection and foetal growth. Maternal endocrine disturbances, whether caused by pre-existing illnesses or pregnancy-induced problems, can harm both the foetus and the mother. This review delves into the physiology and adaptations of the maternal endocrine system, concentrating on major organs such as the thyroid, pancreas, adrenal glands and placenta. The pathogenesis of gestational diabetes and thyroid dysfunctions and their effects on mother and foetal health. During pregnancy, it impairs foetal neurodevelopment, growth and congenital malformations, often caused by hormonal imbalances and disruptors. Polycystic ovary syndrome (PCOS), though not a gestational disorder, is a major preconception risk factor for infertility, gestational diabetes and adverse perinatal outcomes. These endocrine perturbations collectively contribute to an elevated risk of obstetric complications, including preterm birth, stillbirth and neonatal morbidity. These endocrine perturbations lead to an elevated risk of obstetric complications, including preterm birth, stillbirth and neonatal morbidity. Furthermore, environmental and epigenetic factors are evaluated in mother-foetus health due to their potential transgenerational consequences. Future research directions include combining personalized medicine, omics technologies and artificial intelligence to improve maternal-foetal outcomes. Improved diagnosis accuracy, treatment efficacy and preventative care will also contribute to the achievement of numerous Sustainable Development Goals, such as improving health and well-being, eliminating health-care disparities and supporting maternal-foetal health innovation. This study highlights the critical need to increase global efforts to promote maternal-foetal endocrine research and treatment.
References
Rolfo A, Nuzzo AM, De Amicis R, Moretti L, Bertoli S, Leone A, et al. Fetal–maternal exposure to endocrine disruptors: Correlation with diet intake and pregnancy outcomes. Nutrients. 2020;12(6):1744. doi: 10.3390/nu12061744.
Fowden AL, Forhead AJ. Endocrine regulation of fetal metabolism towards term. Domest. Anim Endocrinol. 2022;78:106657. doi: 10.1016/j.domaniend.2021.106657.
Parrettini S, Caroli A, Torlone E. Nutrition and metabolic adaptations in physiological and complicated pregnancy: focus on obesity and gestational diabetes. Front Endocrinol. 2020;11:611929. doi: 10.3389/fendo.2020.611929.
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, et al. The hypothalamic-pituitary-adrenal axis: development, programming actions of hormones, and maternal-fetal interactions. Front Behav Neurosci. 2021;14:601939. doi: 10.3389/fnbeh.2020.601939.
Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z. Diabetes during pregnancy: a maternal disease complicating the course of pregnancy with long-term deleterious effects on the offspring. a clinical review. Int J Mol Sci. 2021;22(6):2965. doi: 10.3390/ijms22062965.
Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16(9):479-94. doi: 10.1038/s41574-020-0372-6.
Guarnotta V, Amodei R, Frasca F, Aversa A, Giordano C. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int J Mol Sci. 2022;23(10):5710. doi: 10.3390/ijms23105710.
Miao S, Yin J, Liu S, Zhu Q, Liao C, Jiang G, et al. Maternal–fetal exposure to antibiotics: levels, mother-to-child transmission, and potential health risks. Environ Sci Technol. 2024;58(19):8117-8134. doi: 10.1021/acs.est.4c02018.
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol. 2023;14:1215353. doi: 10.3389/fendo.2023.1215353.
Ho V, Pelland-St-Pierre L, Gravel S, Bouchard MF, Verner MA, Labrèche F, et al. Endocrine disruptors: challenges and future directions in epidemiologic research. Environ Res J. 2022;204:111969. doi: 10.1016/j.envres.2021.111969.
Davis EP, Narayan AJ. Pregnancy as a period of risk, adaptation, and resilience for mothers and infants. Dev Psychopathol. 2020, 32(5), 1625-39. doi: 10.1017/S0954579420001121.
Grattan DR, Ladyman SR. Maternal recognition of pregnancy. In: Brunton PJ, Grattan GR, Eds. Neuroendocrine regulation of mammalian pregnancy and lactation. Berlin: Springer; 2024. Pp. 1-20. doi: 10.1007/978-3-031-51138-7_1.
Bai J, Qi QR, Li Y, Day R, Makhoul J, Magness RR, et al. Estrogen receptors and estrogen-induced uterine vasodilation in pregnancy. Int J Mol Sci. 2020;21(12):4349. doi: 10.3390/ijms21124349.
Kamphof HD, Posthuma S, Gordijn SJ, Ganzevoort W. Fetal growth restriction: mechanisms, epidemiology, and management. MFM. 2022;4(3):186-96. doi: 10.1097/FM9.0000000000000161.
Keats EC, Oh C, Chau T, Khalifa DS, Imdad A, Bhutta ZA, et al. Effects of vitamin and mineral supplementation during pregnancy on maternal, birth, child health and development outcomes in low‐and middle income countries: A systematic review. Campbell Syst Rev. 2021;17(2):1127. doi: 10.1002/cl2.1127.
Stern C, Schwarz S, Moser G, Cvitic S, Jantscher-Krenn E, Gauster M, et al. Placental endocrine activity: adaptation and disruption of maternal glucose metabolism in pregnancy and the influence of fetal sex. Int J Mol Sci. 2021;22(23):12722. doi: 10.3390/ijms222312722.
Masserdotti A, Gasik M, Grillari-Voglauer R, Grillari J, Cargnoni A, Chiodelli P, et al. Unveiling the human fetal-maternal interface during the first trimester: biophysical knowledge and gaps. Front cell dev biol. 2024;12:1411582. doi: 10.3389/fcell.2024.1411582.
Shao X, Yu W, Yang Y, Wang F, Yu X, Wu H, et al. The mystery of the life tree: the placentas. Biol Reprod. 2022;107(1):301-16. doi: 10.1093/biolre/ioac095.
Ladyman SR, Brooks VL. Central actions of insulin during pregnancy and lactation. J Neuroendocrinol. 2021;33(4):12946. doi: 10.1111/jne.12946.
Mégier C, Dumery G, Luton D. Iodine and thyroid maternal and fetal metabolism during pregnancy. Metabolites. 2023;13(5):633. doi: 10.3390/metabo13050633.
Ladyman SR, Hackwell EC, Brown RS. The role of prolactin in co-ordinating fertility and metabolic adaptations during reproduction. Neuropharmacology. 2020;167:107911. doi: 10.1016/j.neuropharm.2019.107911.
Tanner HL, Dekker Nitert M, Callaway LK, Barrett HL. Ketones in pregnancy: why is it considered necessary to avoid them and what is the evidence behind their perceived risk? Diabetes Care. 2021;44(1):280-9. doi: 10.2337/dc20-2008.
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (pro) renin receptor in activating the renin-angiotensin system during normotensive and preeclamptic pregnancies. Curr Hypertens Rep. 2024;26(12):483-95. doi: 10.1007/s11906-024-01316-1.
Robinson JN, Phelan JP. Pregnancy-induced physiologic alterations. J Crit Care. 2024;4820(3250):49. doi: 10.1002/9781119820260.ch4.
Mulder EG, de Haas S, Mohseni Z, Schartmann N, Abo Hasson F, Alsadah F, et al. Cardiac output and peripheral vascular resistance during normotensive and hypertensive pregnancy–a systematic review and meta‐analysis. BJOG: Int J Obstet Gynaecol. 2022;129(5):696-707. doi: 10.1111/1471-0528.16678.
Sharifi-Heris Z, Rahmani AM, Axelin A, Rasouli M, Bender M. Heart rate variability and pregnancy complications: systematic review. Interact J Med Res. 2023;12(1):e44430. doi: 10.2196/44430.
Morton A. Physiological changes and cardiovascular investigations in pregnancy. Heart Lung Circ. 2021;30(1):e6-e15. doi: 10.1016/j.hlc.2020.10.001.
Najam US, Kim JA, Kim SY, Wander G, Rodriguez M, Virk HUH, et al. Maternal heart failure: state-of-the-art review. Heart Lung Circ. 2024:1-15. doi: 10.1007/s10741-024-10466-y.
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, et al. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol. 2024. doi: 10.1152/ajpheart.00055.2024.
Li S, Girgla S, Sherman A, Alpay-Savasan Z, Mehta N. Atrial fibrillation considerations in the fourth trimester (postpartum period). J Interv Card Electrophysiol. 2024:1-14. doi: 10.1007/s10840-023-01611-y.
Tapaskar N, Tremblay-Gravel M, Khush KK. Contemporary management of cardiogenic shock during pregnancy. J Card Fail. 2023;29(2):193-209. doi: 10.1016/j.cardfail.2022.09.014.
Bukhari S, Fatima S, Barakat AF, Fogerty AE, Weinberg I, Elgendy IY, et al. Venous thromboembolism during pregnancy and postpartum period. Eur J Intern Med. 2022;97:8-17. doi: 10.1016/j.ejim.2021.12.013.
Chen Z, Meima ME, Peeters RP, Visser WE. Thyroid hormone transporters in pregnancy and fetal development. Int J Mol Sci. 2022;23(23):15113. doi: 10.3390/ijms232315113.
Kumar V, Sharma P, Pasrija R, Chakraborty P, Basheer T, Thomas J, et al. Engineered lignocellulosic based biochar to remove endocrine-disrupting chemicals: Assessment of binding mechanism. Chemosphere. 2024:142584. doi: 10.1016/j.chemosphere.2024.142584.
Bowman CE, Arany Z, Wolfgang MJ. Regulation of maternal–fetal metabolic communication. Cell Mol Life Sci. 2021;78:1455-86. doi: 10.1007/s00018-020-03674-w.
Calvo MJ, Parra H, Santeliz R, Bautista J, Luzardo E, Villasmil N, et al. The placental role in gestational diabetes mellitus: a molecular perspective. touchREV Endocrinol. 2024;20(1):10. doi: 10.17925/EE.2024.20.1.5.
Nakshine VS, Jogdand SD. A comprehensive review of gestational diabetes mellitus: impacts on maternal health, fetal development, childhood outcomes, and long-term treatment strategies. Cureus. 2023;15(10). doi: 10.7759/cureus.47500.
Hamburg-Shields E, Mesiano S. The hormonal control of parturition. Physiol Rev. 2024;104(3):1121-1145. doi: 10.1152/physrev.00019.2023.
Herrera CL, Maiti K, Smith R. Preterm birth and corticotrophin-releasing hormone as a placental clock. Endocrinology. 2023;164(2):bqac206. doi: 10.1210/endocr/bqac206.
Castinetti F. How best to monitor the specific side effects of medical treatments of Cushing’s disease. Best Pract Res Clin Endocrinol Metab. 2022;36(6):101718. doi: 10.1016/j.beem.2022.101718.
Finnegan C, Smyth S, Smith O, Dicker P, Breathnach FM. Glycosylated haemoglobin as an indicator of diabetes control in pregnancy: A 10-year review of the relationship between HbA1c trends and delivery outcome in type I and type II diabetes. Eur J Obstet Gynecol Reprod Biol. 2023;281:36-40. doi: 10.1016/j.ejogrb.2022.12.007.
Benhalima K, Beunen K, Siegelaar SE, Painter R, Murphy HR, Feig DS, et al. Management of type 1 diabetes in pregnancy: update on lifestyle, pharmacological treatment, and novel technologies for achieving glycaemic targets. Lancet Diabetes Endocrinol. 2023;11(7):490-508. doi: 10.1016/s2213-8587(23)00116-x.
Anandappa S, Joshi M, Polanski L, Carroll PV. Thyroid disorders in subfertility and early pregnancy. Ther Adv Endocrinol Metab. 2020;11:2042018820945855. doi: 10.1177/2042018820945855.
Pangkahila ES, Tangkas LPWS. Thyroid dysfunction in pregnancy: a literature review. Eur J Med Health Sci. 2023;5(3):12-6. doi: 10.24018/ejmed.2023.5.3.1669.
Kumar V, Sharma N, Sharma P, Pasrija R, Kaur K, Umesh M, et al. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol Appl Pharmacol. 2023;474:116623. doi: 10.1016/j.taap.2023.116623.
Yao B, Yang C, Pan C, Li Y. Thyroid hormone resistance: mechanisms and therapeutic development. Mol Cell Endocrinol. 2022;553:111679. doi: 10.1016/j.mce.2022.111679.
Saravanan P, Magee LA, Banerjee A, Coleman MA, Von Dadelszen P, Denison F, et al. Gestational diabetes: opportunities for improving maternal and child health. Lancet Diabetes Endocrinol. 2020;8(9):793-800. doi: 10.1016/S2213-8587(20)30161-3.
Paulo MS, Abdo NM, Bettencourt-Silva R, Al-Rifai RH. Gestational diabetes mellitus in Europe: a systematic review and meta-analysis of prevalence studies. Front Endocrinol. 2021;12:691033. doi: 10.3389/fendo.2021.691033
Mehta LS, Velarde GP, Lewey J, Sharma G, Bond RM, Navas-Acien A, et al. Cardiovascular disease risk factors in women: the impact of race and ethnicity: a scientific statement from the American Heart Association. Circ. 2023;147(19):1471-87. doi: 10.1161/CIR.0000000000001139.
Kokkinari A, Dagla M, Lykeridou A, Iatrakis G. The association between vitamin d intake and gestational diabetes mellitus: a systematic review. Clin Exp Obstet Gynecol. 2023;50(5):96. doi: 10.31083/j.ceog5005096.
Soares-Jr JM, Hayashida SA, Marcondes JA, Maciel GA, Barcellos CR, Maffazioli GD, et al. Influence of phenotypes on the metabolic syndrome of women with polycystic ovary syndrome over a six-year follow-up in Brazil. Biomedicines. 2023;11(12):3262. doi: 10.3390/biomedicines11123262.
Ding H, Zhang J, Zhang F, Zhang S, Chen X, Liang W, et al. Resistance to the insulin and elevated level of androgen: A major cause of polycystic ovary syndrome. Front Endocrinol. 2021;12:741764. doi: 10.3389/fendo.2021.741764.
Li Z, Wang YH, Wang LL, Hu DT, Teng Y, Zhang TY, et al. Polycystic ovary syndrome and the risk of endometrial, ovarian and breast cancer: an updated meta-analysis. Scott Med J. 2022;67(3):109-20. doi: 10.1177/00369330221107099.
Helvaci N, Yildiz BO. The impact of ageing and menopause in women with polycystic ovary syndrome. Clin Endocrinol. 2022;97(3):371-82. doi: 10.1111/cen.14558
Sly P, Blake T, Islam Z. Impact of prenatal and early life environmental exposures on normal human development. Paediatr Respir Rev. 2021;40:10-14. doi: 10.1016/j.prrv.2021.05.007.
Al‐Gailani L, Al‐Kaleel A. The relationship between prenatal, perinatal, and postnatal factors and ADHD: The Role of nutrition, diet, and stress. Dev Psychol. 2024;66(8):70004. doi: 10.1002/dev.70004.
Salomon I. Neurobiological insights into cerebral palsy: a review of the mechanisms and therapeutic strategies. Brain Behav. 2024;14(10):70065. doi: 10.1002/brb3.70065.
Dougnon G, Matsui H. Modelling autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) using mice and zebrafish. Int J Mol Sci. 2022;23(14):7550. doi: 10.3390/ijms23147550.
Page L, Younge N, Freemark M. Hormonal determinants of growth and weight gain in the human fetus and preterm infant. Nutrients. 2023;15(18):4041. doi: 10.3390/nu15184041.
Creeth HDJ, John RM. The placental programming hypothesis: placental endocrine insufficiency and the co-occurrence of low birth weight and maternal mood disorders. Placenta. 2020;98:52-9. doi: 10.1016/j.placenta.2020.03.011.
Ge GM, Leung MT, Man KK, Leung WC, Ip P, Li GH, et al. Maternal thyroid dysfunction during pregnancy and the risk of adverse outcomes in the offspring: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2020;105(12):3821-41. doi: 10.1210/clinem/dgaa555.
Bellingham M, Evans NP, Lea RG, Padmanabhan V, Sinclair KD. Reproductive and metabolic health following exposure to environmental chemicals: mechanistic insights from mammalian models. Annu Rev Anim Biosci. 2024:13. doi: 10.1146/annurev-animal-111523-102259.
Gachowska M, Dąbrowska A, Wilczyński B, Kuźnicki J, Sauer N, Szlasa W, et al. The influence of environmental exposure to xenoestrogens on the risk of cancer development. Int J Mol Sci. 2024;25(22):12363. doi: 10.3390/ijms252212363.
Wang LH, Chen LR, Chen KH. In vitro and vivo identification, metabolism and action of xenoestrogens: An overview. Int J Mol Sci. 2021;22(8):4013. doi: 10.3390/ijms22084013.
Crider KS, Qi YP, Yeung LF, Mai CT, Head Zauche L, Wang A, et al. Folic acid and the prevention of birth defects: 30 years of opportunity and controversies. Annu Rev Nutr. 2022;42(1):423-52. doi: 10.1146/annurev-nutr-043020-091647.
Sharma N, Kumar V, Vimal S, Umesh M, Sharma P, Thazeem B, et al. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. Environ. Toxicol Pharmacol. 2024;109:104480. doi: 10.1016/j.etap.2024.104480.
Lane MKM, Garedew M, Deary EC, Coleman CN, Ahrens-Víquez MM, Erythropel HC, et al. What to expect when expecting in lab: a review of unique risks and resources for pregnant researchers in the chemical laboratory. Chem Res Toxicol. 2022;35(2):163-98. doi: 10.1021/acs.chemrestox.1c00380.
Rohweder R, Salcedo Arteaga S, da Silva Gomes VL, Schulze PAC, Schuler-Faccini L. 2024. Pesticide exposures during pregnancy and health outcomes in latin america and the caribbean: a scoping review of human observational studies. JHP. 2024;12(1-4):016001. doi: 10.1289/JHP1043.
Sharma S, Wakode S, Sharma A, Nair N, Dhobi M, Wani MA, et al. Effect of environmental toxicants on neuronal functions. Environ Sci Pollut Res. 2020;27:44906-21. doi: 10.1007/s11356-020-10950-6.
Lin RR, Lin DA, Maderal AD. Toxic ingredients in personal care products: a dermatological perspective. Dermatitis®. 2024;35(2):121-31. doi: 10.1089/derm.2023.0215.
Lanphear B, Navas-Acien A, Bellinger DC. Lead Poisoning. NEJM. 2024;391(17):1621-31. doi: 10.1056/NEJMra2402527.
Joudar SS, Albahri AS, Hamid RA, Zahid IA, Alqaysi ME, Albahri OS, et al. Artificial intelligence-based approaches for improving the diagnosis, triage, and prioritization of autism spectrum disorder: a systematic review of current trends and open issues. Artif Intell Rev. 2023;56(1):53-117. doi: 10.1007/s10462-023-10536-x.
Allan-Blitz LT, Goldfine C, Erickson TB. Environmental and health risks posed to children by artisanal gold mining: A systematic review. SAGE Open Med. 2022;10:20503121221076934. doi: 10.1177/20503121221076934.
MM F. Females and occupational exposures. Egypt J Occup Med. 2024;48(3):15-28. doi: 10.21608/ejom.2024.246439.1320.
Minatoya M, Kishi R. A review of recent studies on bisphenol A and phthalate exposures and child neurodevelopment. Int J Environ Res Public Health. 2021;18(7):3585. doi: 10.3390/ijerph18073585.
Montagnoli C, Ruggeri S, Cinelli G, Tozzi AE, Bovo C, Bortolus R, et al. Anything new about paternal contribution to reproductive outcomes? A review of the evidence. World J Mens Health. 2021;39(4):626. doi: 10.5534/wjmh.200147.
Pasqual E, de Basea MB, López-Vicente M, Thierry-Chef I, Cardis E. Neurodevelopmental effects of low dose ionizing radiation exposure: A systematic review of the epidemiological evidence. Environ Int. 2020;136:105371. doi: 10.1016/j.envint.2019.105371.
Bucher ML, Anderson FL, Lai Y, Dicent J, Miller GW, Zota AR. 2023. Exposomics as a tool to investigate differences in health and disease by sex and gender. Exposome. 2023;3(1):003. doi: 10.1093/exposome/osad003.
Zhou J, Shi Z, Zhou L, Hu Y, Zhang M. Occupational noise-induced hearing loss in China: a systematic review and meta-analysis. BMJ open. 2020;10(9):039576. doi: 10.1136/bmjopen-2020-039576.
Abilash D, Sridharan TB. Impact of air pollution and heavy metal exposure on sperm quality: A clinical prospective research study. Toxicol Rep. 2024;13:101708. doi: 10.1016/j.toxrep.2024.101708.
Virant-Klun I, Imamovic-Kumalic S, Pinter B. From oxidative stress to male infertility: review of the associations of endocrine-disrupting chemicals (bisphenols, phthalates, and parabens) with human semen quality. J Antioxid. 2022;11(8):1617. doi: 10.3390/antiox11081617.
Martínez MÁ, Marquès M, Salas-Huetos A, Babio N, Domingo JL, Salas-Salvadó J, et al. Lack of association between endocrine disrupting chemicals and male fertility: a systematic review and meta-analysis. Environ Res J. 2023;217:114942. doi: 10.1016/j.envres.2022.114942.
Lahimer M, Abou Diwan M, Montjean D, Cabry R, Bach V, Ajina M, et al. Endocrine disrupting chemicals and male fertility: from physiological to molecular effects. Front Public Health. 2023;11:1232646. doi: 10.3389/fpubh.2023.1232646.
Adegoke EO, Rahman MS, Amjad S, Pang WK, Ryu DY, Park YJ, et al. Environmentally relevant doses of endocrine disrupting chemicals affect male fertility by interfering with sertoli cell glucose metabolism in mice. Chemosphere. 2023;337:139277. doi: 10.1016/j.chemosphere.2023.139277.
Akbaba E. Endocrine Disruptors and Infertility. Reprod Biomed Online. 2023;47:103443. doi: 10.1016/j.rbmo.2023.103443.
Ding T, Yan W, Zhou T, Shen W, Wang T, Li M, et al. Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence. Environ Pollut. 2022;305:119269. doi: 10.1016/j.envpol.2022.119269.
Thacharodi A, Hassan S, Acharya G, Vithlani A, Le QH, Pugazhendhi A, et al. Endocrine disrupting chemicals and their effects on the reproductive health in men. Environ Res. 2023:116825. doi: 10.1016/j.envres.2023.116825.
Gingrich J, Ticiani E, Veiga-Lopez A. Placenta disrupted: endocrine disrupting chemicals and pregnancy. Endocrinol Metab. 2020;31(7):508-24. doi: 10.1016/j.tem.2020.03.003.
Yan Y, Guo F, Liu K, Ding R, Wang Y. The effect of endocrine-disrupting chemicals on placental development. Front Endocrinol. 2023;14:1059854. doi: 10.3389/fendo.2023.1059854.
de Aguiar Greca SC, Kyrou I, Pink R, Randeva H, Grammatopoulos D, Silva E, et al. Involvement of the endocrine-disrupting chemical bisphenol A (BPA) in human placentation. J Clin Med. 2020;9(2):405. doi: 10.3390/jcm9020405.
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol A on the placenta. Biol Reprod. 2022;106(5):826-34. doi: 10.1093/biolre/ioac001.
Liu W, Liu Q, Liu W, Qiu C. Maternal risk factors and pregnancy complications associated with low birth weight neonates in preterm birth. J Obstet Gynaecol Res. 2021;147(9):3196-202. doi: 10.1111/jog.14830.
DeMarco N, Twynstra J, Ospina MB, Darrington M, Whippey C, Seabrook JA. Prevalence of low birth weight, premature birth, and stillbirth among pregnant adolescents in Canada: a systematic review and meta-analysis. J Pediatr Adolesc Gynecol. 2021;34(4):530-7. doi: 10.1016/j.jpag.2021.03.003.
Rassie K, Giri R, Joham AE, Teede H, Mousa A. Human placental lactogen in relation to maternal metabolic health and fetal outcomes: A systematic review and meta-analysis. Int J Mol Sci. 2022;23(24):15621. doi: 10.3390/ijms232415621.
Cattini PA, Jin Y, Jarmasz JS, Noorjahan N, Bock ME. Obesity and regulation of human placental lactogen production in pregnancy. J Neuroendocrinol. 2020;32(11):12859. doi: 10.1111/jne.12859.
Garay SM, Sumption LA, John RM. Prenatal health behaviours as predictors of human placental lactogen levels. Front Endocrinol. 2022;13:946539. doi: 10.3389/fendo.2022.946539.
Fowden AL, Vaughan OR, Murray AJ, Forhead AJ. Metabolic consequences of glucocorticoid exposure before birth. J Nutr. 2022;14(11):2304. doi: 10.3390/nu14112304.
Liu Y, Ding Q, Guo W. Life course impact of glucocorticoids during pregnancy on muscle development and function. Front anim sci. 2021;2:788930. doi: 10.3389/fanim.2021.788930.
Johns EC, Denison FC, Reynolds RM. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. BBA - Mol Basis of Disease. 2020;1866(2):165374. doi: 10.1016/j.bbadis.2018.12.025.
Cowell W, Deyssenroth M, Chen J, Wright RJ. Maternal stress in relation to sex-specific expression of placental genes involved in nutrient transport, oxygen tension, immune response, and the glucocorticoid barrier. Placenta. 2020;96:19-26. doi: 10.1016/j.placenta.2020.05.004.
Eng L, Lam L. Thyroid function during the fetal and neonatal periods. Neoreviews. 2020;21(1):30-e36. doi: 10.1542/neo.21-1-e30.
Lucaccioni L, Ficara M, Cenciarelli V, Berardi A, Predieri B, Iughetti L, et al. Long term outcomes of infants born by mothers with thyroid dysfunction during pregnancy. Acta Bio Medica: Acta Biomed. 2020;92(1):20210. doi: 10.10.23750/abm.v92i1.9696.
Camm EJ, Inzani I, De Blasio MJ, Davies KL, Lloyd IR, Wooding FP, et al. Thyroid hormone deficiency suppresses fetal pituitary–adrenal function near term: implications for the control of fetal maturation and parturition. J Thyroid Res. 2021;31(6):861-9. doi: 10.1089/thy.2020.0534.
Zhou Q, Acharya G. Placental hormones and pregnancy-related endocrine disorders. Front Endocrinol. 2022;13:905829. doi: 10.3389/fendo.2022.905829.
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Asp Med. 2022;87:101054. doi: 10.1016/j.mam.2021.101054.
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. Sci Total Environ. 2020;739:139626. doi: 10.1016/j.scitotenv.2020.139626.
Pacyga DC, Gardiner JC, Flaws JA, Li Z, Calafat AM, Korrick SA, et al. Maternal phthalate and phthalate alternative metabolites and urinary biomarkers of estrogens and testosterones across pregnancy. Environ Int. 2021;155:106676. doi: 10.1016/j.envint.2021.106676.
Carbone L, Cariati F, Sarno L, Conforti A, Bagnulo F, Strina I, et al. Non-invasive prenatal testing: current perspectives and future challenges. Genes. 2020;12(1):15. doi: 10.3390/genes12010015.
Shelmerdine SC, Hutchinson JC, Arthurs OJ, Sebire NJ. Latest developments in post‐mortem foetal imaging. Prenat Diagn. 2020;40(1):28-37. doi: 10.1002/pd.5562.
Scotchman E, Shaw J, Paternoster B, Chandler N, Chitty LS. Non-invasive prenatal diagnosis and screening for monogenic disorders. Eur J Obstet Gynecol Reprod Biol. 2020;253:320-7. doi: 10.1016/j.ejogrb.2020.08.001.
Bedei I, Wolter A, Weber A, Signore F, Axt-Fliedner R. Chances and challenges of new genetic screening technologies (NIPT) in prenatal medicine from a clinical perspective: a narrative review. Genes. 2021;12(4):501. doi: 10.3390/genes12040501.
Mohan P, Lemoine J, Trotter C, Rakova I, Billings P, Peacock S, et al. Clinical experience with non‐invasive prenatal screening for single‐gene disorders. Obstet Gynecol. 2022;59(1):33-9. doi: 10.1002/uog.23756.
Hyland CA, O’Brien H, Flower RL, Gardener GJ. Non-invasive prenatal testing for management of haemolytic disease of the fetus and newborn induced by maternal alloimmunisation. Transfus Apher Sci. 2020;59(5):102947. doi: 10.1016/j.transci.2020.102947.
Ismanto A, Hadibarata T, Kristanti RA, Maslukah L, Safinatunnajah N, Sathishkumar P, et al. The abundance of endocrine-disrupting chemicals (EDCs) in downstream of the Bengawan Solo and Brantas rivers located in Indonesia. Chemosphere. 2022;297:134151. doi: 10.1016/j.chemosphere.2022.134151.
Erkekoğlu P, Özyurt AB, Yirün A, Çakır DA. Testicular dysgenesis syndrome and phthalate exposure: A review of literature. Arch Pharm Pract. 2021;71(6):508-43. doi: 10.5937/arhfarm71-34438.
Khan I, Singh P, Srinivasan E. A systematic overview on treatment towards endocrine disruptors. Sustain. Energy Technol Assessments. 2020;53:102688. doi: 10.1016/j.seta.2022.102688.
Pioch A, Markwitz W, Litwin A, Szpera A. Inteleukin-6 secretion during pathophysiological events of pregnancy–preterm birth, preeclampsia, fetal growth restriction, gestational diabetes mellitus. J Med Sci. 2024;93(2):984-e984. doi: 10.20883/medical.e984.
Goudreau AD, Everest C, Nagpal TS, Puranda JL, Bhattacharjee J, Vasanthan T, et al. Elucidating the interaction between maternal physical activity and circulating myokines throughout gestation: A scoping review. Am J Reprod Immunol. 2021;86(5):13488. doi: 10.1111/aji.13488.
Mariana M, Cairrao E. The relationship between phthalates and diabetes: a review. Metabolites. 2023;13(6):746. doi: 10.3390/metabo13060746.
Mănescu M, Mănescu IB, Grama A. A review of stage 0 biomarkers in type 1 diabetes: the holy grail of early detection and prevention? J Pers Med. 2024;14(8). doi: 10.3390/jpm14080878.
Geno KA, Nerenz RD. Evaluating thyroid function in pregnant women. Crit Rev Clin Lab Sci. 2022;59(7):460-79. doi: 10.1080/10408363.2022.2050182.
Langdon J, Gupta A, Sharbidre K, Czeyda-Pommersheim F, Revzin M. Thyroid cancer in pregnancy: diagnosis, management, and treatment. Abdo Radiol. 2023;48(5):1724-39. doi: 10.1007/s00261-023-03808-1.
Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol. 2020;8(8):703-18. doi: 10.1016/s2213-8587(20)30129-7.
Ibrahim A, Khoo MI, Ismail EHE, Hussain NHN, Zin AAM, Noordin L, et al. Oxidative stress biomarkers in pregnancy: a systematic review. Reprod Biol Endocrinol. 2024;22(1):93. doi: 10.1186/s12958-024-01259-x.
Majumder S, Moriarty KL, Lee Y, Crombleholme TM. placental gene therapy for fetal growth restriction and preeclampsia: preclinical studies and prospects for clinical application. J Clin Med. 2024;13(18):5647. doi: 10.3390/jcm13185647.
Liu M, Xiao B, Zhu Y, Chen M, Huang J, Cao Q, Wang F. The emerging role of MicroRNAs in female reproductive diseases. J Clin Med Current Res. 2023;3(3):1-12. doi: 10.53043/2832-7551.JCMCR.3.013.
Street ME, Bernasconi S. Endocrine-disrupting chemicals in human fetal growth. Int J Mol Sci. 2020;21(4):1430. doi: 10.3390/ijms21041430.
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol. 2023;14:1215353. doi: 10.3389/fendo.2023.1215353.
Puche-Juarez M, Toledano JM, Moreno-Fernandez J, Gálvez-Ontiveros Y, Rivas A, Diaz-Castro J, Ochoa JJ. The role of endocrine disrupting chemicals in gestation and pregnancy outcomes. J Nutr. 2023;15(21):4657. doi: 10.3390/nu15214657.
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine‐disrupting compounds and their effects on early development. Birth Defects Res. 2020;12(17):1308-25.doi: 10.1002/bdr2.1741.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
