Design and Function of a Circulation Phantom for the Bolus Tracking Technique Use on a Computer Tomograph

Keywords: Tomography, computed, Bolus tracking, Phantoms, imaging, Contrast media, Flow rate

Abstract


Background/Aim: Bolus tracking (BT) is a widely adopted technique for both the administration and monitoring of contrast media in computed tomography (CT) scans. The aim of this study was to create a circulation phantom for the BT technique for CT. The phantom has been tested for functionality and is intended to be used for teaching radiology technology students.

Methods: Contrast media acquisitions were performed in a circulation phantom. Test setup with five different flow rates (2 [mL/s], 3 [mL/s], 4 [mL/s], 5 [mL/s] and 6 [mL/s]) were used for each cannula size with different gauge (G) units (22 G, 20 G, 18 G and 17 G). Each cannula's trigger time (TT) was measured three times with each flow. A total of 60 measurements were performed to show the functionality.

Results: The measurements have shown that in each cannula with a flow of 2 [mL/s] and 3 [mL/s], BT was triggered at roughly 100 HU at the same time. If the flow was higher than 3 [mL/s], the blue cannula with 22 G deviates from the others by one second until BT is triggered.

Conclusion: The function of the phantom was verified. The CT started the scan automatically using the BT technique. The verification was performed for each cannula size and each flow.

References

Lusic H and Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113: 1641–66. doi: 10.1021/cr200358s.

Rogers DC, Tadi P. Intravenous Contrast. 2023 Mar 13. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 32491726.

Behrendt FF, Pietsch H, Jost G, Palmowski M, Günther RW, Mahnken AH. Identification of the iodine concentration that yields the highest intravascular enhancement in MDCT angiography. AJR Am J Roentgenol. 2013 May;200(5):1151-6. doi: 10.2214/AJR.12.8984.

Bae KT. Principles of contrast medium delivery and scan timing in MDCT. In: Kalra MK, Saini S, Rubin GD (Eds) MDCT. Milano: Springer Milan, 2008, pp. 10–24. doi: 10.1007/978-88-470-0832-8_2.

Kaproth-Joslin K, Hobbs S, Rajiah P, Chaturvedi A, Chaturvedi A. Optimizing low contrast volume thoracic CT angiography: From the basics to the advanced. J Clin Imaging Sci. 2022 Jul 29;12:41. doi: 10.25259/JCIS_51_2022.

Hinzpeter R, Eberhard M, Gutjahr R, Reeve K, Pfammatter T, Lachat M, et al. CT Angiography of the aorta: contrast timing by using a fixed versus a patient-specific trigger delay. Radiology. 2019 May;291(2):531-8. doi: 10.1148/radiol.2019182223.

Zhu J, Wang Z, Kim Y, Bae SK, Tao C, Gong J, et al. Analysis of contrast time-enhancement curves to optimise CT pulmonary angiography. Clin Radiol. 2017 Apr;72(4):340.e9-340.e16. doi: 10.1016/j.crad.2016.11.018.

Bliznakova K. The advent of anthropomorphic three-dimensional breast phantoms for X-ray imaging. Phys Med. 2020;79:145–61. doi: 10.1016/j.ejmp.2020.11.025.

Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys. 2018;45:e740-60. doi: 10.1002/mp.13058.

Shankar SS, Jadick GL, Hoffman EA, Atha J, Sieren JC, Samei E, et al. Scanner-specific validation of a CT simulator using a COPD-emulated anthropomorphic phantom. Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031:120313R. doi: 10.1117/12.2613212.

Siemens Healthineers, Somatom go.all. [Internet]. [Cited: 2-Ded-2024]. Available at: https://www.siemens-healthineers.com/at/computed-tomography/single-source-ct-scanner/somatom-go-all.

Ulrich Medical. CT motion. [Internet]. [Cited: 2-Ded-2024]. Available at: https://www.ulrichmedical.de/produkte/kontrastmittelinjektoren/ct/ct-motion/.

Ismatec. IDEX Health & Science. [Internet]. [Cited: 2-Ded-2024]. Available at: https://assets.fishersci.com/TFS-Assets/CCG/EU/Idex-Health-and-Science/manuals/ISM002_FR%20MOTEUR%20MCP%20PROCESS.pdf.

Bracco. Iomeron 300. [Internet]. [Cited: 2-Ded-2024]. Available at: https://www.bracco.com/sites/default/files/2022-11/us-en-2022-07-06-iomeron-300-uk-smpc-md_0.pdf.

Kok M, Mihl C, Hendriks BM, Altintas S, Kietselaer BL, Wildberger JE, et al. Optimizing contrast media application in coronary CT angiography at lower tube voltage: Evaluation in a circulation phantom and sixty patients. Eur J Radiol. 2016 Jun;85(6):1068-74. doi: 10.1016/j.ejrad.2016.03.022. 16. Behrendt FF, Bruners P, Kalafut J, Mahnken AH, Keil S, Plumhans C, et al. Introduction of a dedicated circulation phantom for comprehensive in vitro analysis of intravascular contrast material application. Invest Radiol. 2008 Oct;43(10):729-36. doi: 10.1097/RLI.0b013e318182267e.

Mihl C, Wildberger JE, Jurencak T, Yanniello MJ, Nijssen EC, Kalafut JF, et al. Intravascular enhancement with identical iodine delivery rate using different iodine contrast media in a circulation phantom. Invest Radiol. 2013 Nov;48(11):813-8. doi: 10.1097/RLI.0b013e31829979e8.

Caruso D, Eid M, Schoepf UJ, De Santis D, Varga-Szemes A, Mangold S, et al. Optimizing contrast media injection protocols in computed tomography angiography at different tube voltages: evaluation in a circulation phantom. J Comput Assist Tomogr. 2017 Sep/Oct;41(5):804-10. doi: 10.1097/RCT.0000000000000613.

Behrendt FF, Bruners P, Keil S, Plumhans C, Mahnken AH, Das M, et al. Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom. Eur J Radiol. 2010 Mar;73(3):688-93. doi: 10.1016/j.ejrad.2009.01.008.

van Hamersvelt RW, Eijsvoogel NG, Mihl C, de Jong PA, Schilham AMR, Buls N, et al. Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study. Int J Cardiovasc Imaging. 2018 Aug;34(8):1265-75. doi: 10.1007/s10554-018-1329-x.

Published
2025/04/30
Section
Original article