Impact of Circadian Meal Timing on Cardiovascular Health: A Comprehensive Review
Sažetak
Cardiovascular health is influenced not only by the quality of diet but also by the timing of meals. Circadian rhythms, the body’s internal biological clock, regulate physiological processes, including metabolism, hormone secretion and cardiovascular function. Disruptions in these rhythms, such as irregular meal timing, have been linked to an increased risk of cardiovascular diseases (CVD). There is a strong association between delayed meal timing, particularly late-night eating and breakfast skipping and heightened cardiovascular and cerebrovascular risks. A large-scale European study has suggested that prolonged overnight fasting may lower the risk of CVD and stroke. Emerging dietary approaches, such as time-restricted eating (TRE) and chrono-nutrition, have gained attention for their potential in mitigating metabolic disorders and promoting cardiovascular health. This review explores the intricate relationship between circadian-regulated meal timing and cardiovascular outcomes, analysing molecular mechanisms, clinical evidence and possible dietary interventions. By understanding the role of chrono-nutrition, this review aims to provide insights into optimising meal schedules to enhance cardiovascular well-being and reduce disease risk. In addition to melatonin’s endogenous regulation, dietary sources of melatonin and chronobiotic nutrients (eg, walnuts, tart cherries, oats) may help support circadian alignment. Strategic intake of these foods, especially during evening hours, could enhance melatonin levels and improve cardiovascular outcomes. Moreover, the timing of other compounds like caffeine has emerged as a modifiable factor, with studies showing that morning coffee consumption may reduce cardiovascular and cancer mortality. While intermittent fasting and caloric restriction both reduce caloric intake, these operate through distinct mechanisms. Caloric restriction focuses on reducing total energy consumption, whereas meal timing strategies emphasise aligning food intake with circadian rhythms without necessarily altering caloric quantity. This distinction is critical, as it supports the view on circadian physiology in metabolic regulation.
Reference
Durgan DJ, Young ME. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res. 2010;106(11):647–58. doi:10.1161/CIRCRESAHA.109.209957.
Curtis AM, Fitzgerald GA. Central and peripheral clocks in cardiovascular and metabolic function. Ann Med. 2006;38(8):552–9. doi:10.1080/07853890600995010.
Cahill LE, Chiuve SE, Mekary R, Jensen MK, Flint A, Hu FB, et al. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation. 2013;128(4):337–343. doi:10.1161/CIRCULATIONAHA.113.001474.
Rong S, Snetselaar LG, Xu G, Sun Y, Liu B, Wallace RB, et al. Association of skipping breakfast with cardiovascular and all-cause mortality. J Am Coll Cardiol. 2019;73(18):2025-32. doi:10.1016/j.jacc.2019.01.065.
Wang Y, Li F, Li X, Wu J, Chen X, Su Y, et al. Breakfast skipping and risk of all-cause, cardiovascular and cancer mortality among adults: a systematic review and meta-analysis of prospective cohort studies. Food Funct. 2024;15(12):5703–13. doi:10.1039/D3FO05705D.
Takeda N, Maemura K. Circadian clock and the onset of cardiovascular events. Hypertens Res. 2016;39(4):383–90. doi:10.1038/hr.2016.9.
Jamshed H, Steger FL, Bryan DR, Richman JS, Warriner AH, Hanick CJ, et al. Effectiveness of early time-restricted eating for weight loss, fat loss, and cardiometabolic health in adults with obesity: a randomized clinical trial. JAMA Intern Med. 2022;182(9):953–62. doi:10.1001/jamainternmed.2022.3050.
Fatima G, Jha A, Khan MA. Disruption in circadian rhythm increases cardiovascular disease risk factors in shift working nurses. Indian J Cardiovasc Dis Women. 2021;6(2):79–85. doi:10.1055/s-0041-1732508.
Fatima G, S.R.B.M.A. Effects of sleep deprivation on risk of metabolic syndrome and diabetes with reference to circadian dysfunction. World Heart J. 2021;13(2):121–4.
Zhang D, Tong X, Arthurs B, Guha A, Rui L, Kamath A, et al. Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling. J Biol Chem. 2014;289(44):25925–25935. doi:10.1074/jbc.M114.567628.
Zhu H, Zhao ZJ, Liu HY, Cai J, Lu QK, Ji LD, et al. The melatonin receptor 1B gene links circadian rhythms and type 2 diabetes mellitus: an evolutionary story. Ann Med. 2023;55(12):1262–1286. doi:10.1080/07853890.2023.2191218.
Pot G, Almoosawi S, Stephen A. Meal irregularity and cardiometabolic consequences: results from observational and intervention studies. Proc Nutr Soc. 2016;75(3):475–86. doi:10.1017/S0029665116000239.
Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ, Lee YC, Ordovás JM, Scheer FA. Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond). 2013;37(5):604–611. doi:10.1038/ijo.2012.229.
Katsi V, Papakonstantinou I, Soulaidopoulos S, Katsiki N, Tsioufis K. Chrononutrition in cardiometabolic health. J Clin Med. 2022;11(2):296. doi:10.3390.
Bonnet JP, Cardel MI, Cellini J, Hu FB, Guasch-Ferré M. Breakfast skipping, body composition, and cardiometabolic risk: a systematic review and meta-analysis of randomized trials. Obesity (Silver Spring). 2020;28(6):1098–09. doi:10.1002/oby.22791.
Yu J, Xia J, Xu D, Wang Y, Yin S, Lu Y, et al. Effect of skipping breakfast on cardiovascular risk factors: a grade-assessed systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Front Endocrinol (Lausanne). 2023;14:1256899. doi:10.3389/fendo.2023.1256899.
Hutchison AT, Regmi P, Manoogian EN, Fleischer JG, Wittert GA, Panda S, et al. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity (Silver Spring). 2019;27(5):724–32. doi:10.1002/oby.22449.
McHill AW, Phillips AJ, Czeisler CA, Keating L, Yee K, Barger LK, et al. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr. 2017;106(5):1213–1219. doi:10.3945/ajcn.117.161588.
Fatima G, Mahdi F. Personalized medicine: a novel approach for the management of hypertension. World Heart J 2022;14(2).
Gubin D, Danilenko K, Stefani O, Kolomeichuk S, Markov A, Petrov I, et al. Blue light and temperature actigraphy measures predicting metabolic health are linked to melatonin receptor polymorphism. Biology (Basel). 2024;13(1):22. doi:10.3390/biology13010022.
Wang B, Hou J, Mao Z, Chen C, Wang C, Yu S. Association between dinner-bedtime interval and type 2 diabetes mellitus: a large-scale cross-sectional study. J Diabetes Metab Disord. 2024;23:1039. doi:10.1007/s40200-023-01382-3.
Borisenkov MF, Popov SV, Smirnov VV, Martinson EA, Solovieva SV, Danilova LA, et al. The association between melatonin-containing foods consumption and students’ sleep–wake rhythm, psychoemotional, and anthropometric characteristics: a semi-quantitative analysis and hypothetical application. Nutrients. 2023;15(17):3302. doi:10.3390/nu15153302.
Anothaisintawee T, Lertrattananon D, Thamakaison S, Thakkinstian A, Reutrakul S. The relationship among morningness-eveningness, sleep duration, social jetlag, and body mass index in Asian patients with prediabetes. Front Endocrinol (Lausanne). 2018;9:435. doi:10.3389/fendo.2018.00435.
Knutson KL, von Schantz M. Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol Int. 2018;35(8):1045–53. doi:10.1080/07420528.2018.1454458.
Zhang R, Cai X, Lin C, Yang W, Lv F, Wu J, et al. The association between metabolic parameters and evening chronotype and social jetlag in non-shift workers: a meta-analysis. Front Endocrinol (Lausanne). 2022;13:1008820. doi:10.3389/fendo.2022.1008820.
Schumacher LM, Thomas JG, Raynor HA, Rhodes RE, Bond DS. Consistent morning exercise may be beneficial for individuals with obesity. Exerc Sport Sci Rev. 2020;48(3):201–208. doi:10.1249/JES.0000000000000226.
Concepcion T, Barbosa C, Vélez JC, Pepper M, Andrade A, Gelaye B, et al. Daytime sleepiness, poor sleep quality, eveningness chronotype, and common mental disorders among Chilean college students. J Am Coll Health. 2014;62(6):441–8. doi:10.1080/07448481.2014.917652.
Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr. 2017;37:371–93. doi:10.1146/annurev-nutr-071816-064634.
Hutchison AT, Heilbronn LK. Metabolic impacts of altering meal frequency and timing—does when we eat matter? Biochimie. 2016;124:187–97. doi:10.1016/j.biochi.2015.07.025.
Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ, Lee YC, Ordovás JM, Scheer FA. Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond). 2013;37(5):604–11. doi:10.1038/ijo.2012.229.
Morris CJ, Yang JN, Garcia JI, Myers S, Bozzi I, Wang W, et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc Natl Acad Sci U S A. 2015;112(17):E2225–E2234. doi:10.1073/pnas.1418955112.
Oishi K, Kasamatsu M, Ishida N. Gene- and tissue-specific alterations of circadian clock gene expression in streptozotocin-induced diabetic mice under restricted feeding. Biochem Biophys Res Commun. 2004;317(2):330–4. doi:10.1016/j.bbrc.2004.03.055.
Cappuccio FP, Cooper D, D’Elia L, Strazzullo P, Miller MA. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur Heart J. 2011;32(12):1484–92. doi:10.1093/eurheartj/ehr007.
Combs D, Goodwin JL, Quan SF, Morgan WJ, Shetty S, Parthasarathy S. Insomnia, health-related quality of life, and health outcomes in children: a seven-year longitudinal cohort. Sci Rep. 2016;6:27921. doi:10.1038/srep27921.
Magee CA, Kritharides L, Attia J, McElduff P, Banks E. Short and long sleep duration are associated with prevalent cardiovascular disease in Australian adults. J Sleep Res. 2012;21(4):441–447. doi:10.1111/j.1365-2869.2011.00993.x.
Chandola T, Ferrie JE, Perski A, Akbaraly T, Marmot MG. The effect of short sleep duration on coronary heart disease risk is greatest among those with sleep disturbance: a prospective study from the Whitehall II cohort. Sleep. 2010;33(6):739–44. doi:10.1093/sleep/33.6.739.
Domínguez F, Fuster V, Fernández-Alvira JM, Fernández-Friera L, López-Melgar B, Blanco-Rojo R, et al. Association of sleep duration and quality with subclinical atherosclerosis. J Am Coll Cardiol. 2019;73(1):134–44. doi:10.1016/j.jacc.2018.10.060.
Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, van den Berg JF, Verschuren WM. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the Morgen study. Sleep. 2011;34(12):1487–92. doi:10.5665/sleep.1382.
Yang TC, Park K. To what extent do sleep quality and duration mediate the effect of perceived discrimination on health? Evidence from Philadelphia. J Urban Health. 2015;92(6):1024–37. doi:10.1007/S11524-015-9986-8.
Bin YS. Is sleep quality more important than sleep duration for public health? Sleep. 2016;39(10):1629–30. doi:10.5665/sleep.6078.
Lao XQ, Liu X, Deng HB, Chan TC, Ho KF, Wang F, et al. Sleep quality, sleep duration, and the risk of coronary heart disease: a prospective cohort study with 60,586 adults. J Clin Sleep Med. 2018;14(1):109–17. doi:10.5664/jcsm.6894.
Gu C, Brereton N, Schweitzer A, Cotter M, Duan D, Børsheim E, et al. Metabolic effects of late dinner in healthy volunteers—a randomized crossover clinical trial. J Clin Endocrinol Metab. 2020;105(6):2789–2802. doi:10.1210/clinem/dgaa354.
White DP, Weil JV, Zwillich CW. Metabolic rate and breathing during sleep. J Appl Physiol. 1985;59(2):384–91. doi:10.1152/jappl.1985.59.2.384.
Katayose Y, Tasaki M, Ogata H, Nakata Y, Tokuyama K, Satoh M. Metabolic rate and fuel utilization during sleep assessed by whole-body indirect calorimetry. Metabolism. 2009;58(7):920–6. doi:10.1016/j.metabol.2009.02.025.
Kinsey AW, Ormsbee MJ. The health impact of nighttime eating: old and new perspectives. Nutrients. 2015;7(4):2648–2662. doi:10.3390/nu7042648.
Morris CJ, Purvis TE, Hu K, Scheer FAJL. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A. 2016;113(16):E1402–E1411. doi:10.1073/pnas.1516953113.
St-Onge MP, Ard J, Baskin M, Chiuve S, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135(9):e96–e121. doi:10.1161/cir.0000000000000476.
Ryan D, Heaner M. Guidelines (2013) for managing overweight and obesity in adults. Obes (Silver Spring). 2014;22(Suppl 1):S1–S3. doi:10.1002/oby.20819.
Mager DE, Wan R, Brown M, Cheng A, Wareski P, Abernethy D, et al. Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J. 2006;20(5):631–637. doi:10.1096/fj.05-5263.
Scheer FAJL, Hilton MF, Mantzoros CS, Shea S. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106(11):4453–4458. doi:10.1073/pnas.0808180106.
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27(6):1212–21.e3. doi:10.1016/j.cmet.2018.04.010.
Mishra S, Persons PA, Lorenzo AM, Chaliki SS, Bersoux S. Time-restricted eating and its metabolic benefits. J Clin Med. 2023;12(22):7007. doi:10.3390/jcm12227007.
Merry BJ. Oxidative stress and mitochondrial function with aging—the effects of calorie restriction. Aging Cell. 2004;3(1):7–12. doi:10.1046/j.1474-9728.2003.00074.x.
Carlson O, Martin B, Stote KS, Golden E, Maudsley S, Najjar SS, et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism. 2007;56(12):1729–34. doi:10.1016/j.metabol.2007.07.018.
Park J, Miller M, Rhyne J, Wang Z, Hazen SL. Differential effects of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr Metab Cardiovasc Dis. 2019;29(5):513–7. doi:10.1016/j.numecd.2019.02.003.
Varady KA, Bhutani S, Klempel MC, Kroeger C. M. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 2011;10:119. doi:10.1186/1476-511X-10-119.
Suárez-Barrientos A, López-Romero P, Vivas D, Castro-Ferreira F, Núñez-Gil I, Franco E, et al. Circadian variations of infarct size in acute myocardial infarction. Heart. 2011;97(12):970–6. doi:10.1136/hrt.2010.212621.
Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med. 1985;313(21):1315–22. doi:10.1056/NEJM198511213132103.
Bromfield SG, Shimbo D, Booth JN, Correa A, Ogedegbe G, Carson AP, et al. Cardiovascular risk factors and masked hypertension: the Jackson Heart Study. Hypertension. 2016;68(6):1475–82. doi:10.1161/hypertensionaha.116.08308.
Vetter C, DeVore EE, Wegrzyn LR, Massa J, Speizer FE, Kawachi I, et al. Association between rotating night shiftwork and risk of coronary heart disease among women. JAMA. 2016;315(16):1726–34. doi:10.1001/jama.2016.4454.
Shea SA, Hilton MF, Hu K, Scheer FAJL. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ Res. 2011;108(10):e98–e104. doi:10.1161/circresaha.110.233668.
Baxter M, Ray D.W. Circadian rhythms in innate immunity and stress responses. Immunology. 2020;161(3):261–7. doi:10.1111/imm.13166.
Aziz I, McMahon AM, Friedman D, Rabinovich-Nikitin I, Kirshenbaum LA, Martino TA. Circadian influence on inflammatory response during cardiovascular disease. Curr Opin Pharmacol. 2021;57:60–70. doi:10.1016/j.coph.2020.11.007.
Smolensky MH, Portaluppi F, Manfredini R, Hermida RC, Tiseo R, Sackett-Lundeen LL, et al. Diurnal and twenty-four-hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med Rev. 2015;21:12–22. doi:10.1016/j.smrv.2014.06.005.
Hermida RC, Ayala D, Mojón A, Fernández JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010;27(8):1629–51. doi:10.3109/07420528.2010.510230.
Wang H, Ma H, Sun Q, Li J, Heianza Y, Van Dam RM, et al. Coffee drinking timing and mortality in US adults. Eur Heart J. 2025;46(8):749–59. doi:10.1093/eurheartj/ehae871.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
