Literature Review: Personalised Medicine Tools for Antidepressant Management

  • Mikhail A Parshenkov Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University) https://orcid.org/0009-0004-7170-8783
  • Anna N Dyakonova Department of Pharmaceutical and Toxicological Chemistry named after A.P. Arzamastsev, I.M. Sechenov First Moscow State Medical University (Sechenov University) https://orcid.org/0009-0004-4520-192X
  • Polina P Skovorodko Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University) https://orcid.org/0009-0000-5624-4731
  • Galina M Rodionova Department of Pharmaceutical and Toxicological Chemistry named after A.P. Arzamastsev, I.M. Sechenov First Moscow State Medical University (Sechenov University) https://orcid.org/0000-0002-0536-9590
Keywords: Drug monitoring, Pharmacogenetics, Antidepressive agents, Depressive disorder, major, Monoamine hypothesis, Precision medicine

Abstract


Antidepressants are widely used in clinical practice, including for conditions beyond major depression (MD) disorders. However, clinicians still lack reliable tools to match patients with the right drug. Many individuals either fail to respond to the first prescribed agent or discontinue treatment due to side effects. This review focuses on two promising solutions: therapeutic drug monitoring (TDM) and pharmacogenetic testing. TDM measures the actual drug concentration in blood, rather than the prescribed dose. It's important to keep in mind that some individuals exhibit rapid or slow drug metabolism, leading to side effects or no effect at all. For example, for antidepressants like escitalopram, venlafaxine and paroxetine, blood levels often explain treatment response better than dose alone. Pharmacogenetics adds another layer, showing how genetic differences, especially in CYP2C19 and CYP2D6 – can change how drugs are processed. Other gene variants, like those in ABCB1 or SLC6A4, affect how well the drug gets into the brain or how patients tolerate it. Taken together, TDM and pharmacogenetics shift antidepressant prescribing from guesswork to evidence-based decision-making. By measuring drug levels and accounting for genetic variability, clinicians can better match each patient with the right treatment: earlier and with greater confidence. This approach improves efficacy, minimises adverse effects and reduces unnecessary switching or prolonged suffering. As prescribing expands, often beyond psychiatric indications and into long-term use without follow-up – the need for precision grows. What was once an aspirational model of care is becoming a clinical streamline in modern pharmacology.

Author Biographies

Mikhail A Parshenkov, Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University)

Researcher at Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University)

Anna N Dyakonova, Department of Pharmaceutical and Toxicological Chemistry named after A.P. Arzamastsev, I.M. Sechenov First Moscow State Medical University (Sechenov University)

PhD Researcher at Department of Pharmaceutical and Toxicological Chemistry named after A.P. Arzamastsev, I.M. Sechenov First Moscow State Medical University (Sechenov University) 

Polina P Skovorodko, Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University)

Researcher at Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University) 

Galina M Rodionova, Department of Pharmaceutical and Toxicological Chemistry named after A.P. Arzamastsev, I.M. Sechenov First Moscow State Medical University (Sechenov University)

PhD in Pharmaceutical Sciences, Associate Professor at the Department of Pharmaceutical and Toxicological Chemistry named after A.P. Arzamastsev, I.M. Sechenov First Moscow State Medical University (Sechenov University)

References

Hall S, Parr BA, Hussey S, Anoopkumar-Dukie S, Arora D, Grant GD. The neurodegenerative hypothesis of depression and the influence of antidepressant medications. Eur J Pharmacol. 2024 Nov 15;983:176967. doi: 10.1016/j.ejphar.2024.176967.

Birkinshaw H, Friedrich C, Cole P, Eccleston C, Serfaty M, Stewart G, et al. Antidepressants for pain management in adults with chronic pain: a network meta-analysis. Health Technol Assess. 2024 Oct;28(62):1 155. doi: 10.3310/MKRT2948.

Mercier A, Auger-Aubin I, Lebeau JP, Schuers M, Boulet P, Hermil JL, et al. Evidence of prescription of antidepressants for non-psychiatric conditions in primary care: an analysis of guidelines and systematic reviews. BMC Fam Pract. 2013 May 4;14:55. doi: 10.1186/1471-2296-14-55.

Edinoff AN, Akuly HA, Hanna TA, Ochoa CO, Patti SJ, Ghaffar YA, et al. Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurol Int. 2021 Aug 5;13(3):387-401. doi: 10.3390/neurolint13030038.

Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024 Feb 9;9(1):30. doi: 10.1038/s41392-024-01738-y.

Mojtabai R, Olfson M. Proportion of antidepressants prescribed without a psychiatric diagnosis is growing. Health Aff (Millwood). 2011 Aug;30(8):1434-42. doi: 10.1377/hlthaff.2010.1024.

Kessing LV, Ziersen SC, Caspi A, Moffitt TE, Andersen PK. Lifetime incidence of treated mental health disorders and psychotropic drug prescriptions and associated socioeconomic functioning. JAMA Psychiatry. 2023 Oct 1;80(10):1000-1008. doi: 10.1001/jamapsychiatry.2023.2206.

Ruhé HG, Huyser J, Swinkels JA, Schene AH. Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: a systematic review. J Clin Psychiatry. 2006 Dec;67(12):1836-55. doi: 10.4088/jcp.v67n120.

Ouazana-Vedrines C, Lesuffleur T, Cuerq A, Fagot-Campagna A, Rachas A, Gastaldi-Ménager C, et al. Outcomes associated with antidepressant treatment according to the number of prescriptions and treatment changes: 5-year follow-up of a nation-wide cohort study. Front Psychiatry. 2022 Sep 8;13:923916. doi: 10.3389/fpsyt.2022.923916.

Cacabelos R. Trial-and-error versus personalized treatment in depression: the power of pharmacogenomics. J Psychiatry Depress Anxiety. 2016 March;2(1):004. doi: 10.24966/PDA-0150/100004.

Stein DJ, Shoptaw SJ, Vigo DV, Lund C, Cuijpers P, Bantjes J, et al. Psychiatric diagnosis and treatment in the 21st century: paradigm shifts versus incremental integration. World Psychiatry. 2022 Oct;21(3):393-414. doi: 10.1002/wps.20998.

Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, et al. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry. 2024 Nov;25(9):451-536. doi: 10.1080/15622975.2024.2366235.

Gervasini G, Benítez J, Carrillo JA. Pharmacogenetic testing and therapeutic drug monitoring are complementary tools for optimal individualization of drug therapy. Eur J Clin Pharmacol. 2010 Aug;66(8):755-74. doi: 10.1007/s00228-010-0857-7.

Li X, Song Z, Yi Z, Qin J, Jiang D, Wang Z, et al. Therapeutic drug monitoring guidelines in oncology: what do we know and how to move forward? Insights from a systematic review. Ther Adv Med Oncol. 2024 May 27;16:17588359241250130. doi: 10.1177/17588359241250130.

Duarte JD, Cavallari LH. Pharmacogenetics to guide cardiovascular drug therapy. Nat Rev Cardiol. 2021 Sep;18(9):649-65. doi: 10.1038/s41569-021-00549-w.

Hockings JK, Castrillon JA, Cheng F. Pharmacogenomics meets precision cardio-oncology: is there synergistic potential? Hum Mol Genet. 2020 Oct 20;29(R2):R177-R185. doi: 10.1093/hmg/ddaa134.

Branchi I, Poggini S, Capuron L, Benedetti F, Poletti S, Tamouza R, et al. European College of Neuropsychopharmacology (ECNP) ImmunoNeuroPsychiatry Thematic Working Group and Marion Leboyer. Brain-immune crosstalk in the treatment of major depressive disorder. Eur Neuropsychopharmacol. 2021 Apr;45:89-107. doi: 10.1016/j.euroneuro.2020.11.016.

Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, et al. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation. 2025 Jan 19;22(1):10. doi: 10.1186/s12974-024-03312-3.

Albert KM, Newhouse PA. Estrogen, stress, and depression: cognitive and biological interactions. Annu Rev Clin Psychol. 2019 May 7;15:399-423. doi: 10.1146/annurev-clinpsy-050718-095557.

Bikbaev A, Frischknecht R, Heine M. Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep. 2015 Sep 29;5:14527. doi: 10.1038/srep14527.

Fang Y, Ding X, Zhang Y, Cai L, Ge Y, Ma K, et al. Fluoxetine inhibited the activation of A1 reactive astrocyte in a mouse model of major depressive disorder through astrocytic 5-HT2BR/β-arrestin2 pathway. J Neuroinflammation. 2022 Jan 29;19(1):23. doi: 10.1186/s12974-022-02389-y.

Skljarevski V, Zhang S, Iyengar S, D'Souza D, Alaka K, Chappell A, et al. Efficacy of duloxetine in patients with chronic pain conditions. Curr Drug Ther. 2011 Nov;6(4):296-303. doi: 10.2174/157488511798109592.

Marvanova M, Gramith K. Role of antidepressants in the treatment of adults with anorexia nervosa. Ment Health Clin. 2018 Apr 26;8(3):127-37. doi: 10.9740/mhc.2018.05.127.

Shoaib M, Buhidma Y. Why are Antidepressant drugs effective smoking cessation aids? Curr Neuropharmacol. 2018;16(4):426-37. doi: 10.2174/1570159X15666170915142122.

Leaney AA, Lyttle JR, Segan J, Urquhart DM, Cicuttini FM, Chou L, Wluka AE. Antidepressants for hip and knee osteoarthritis. Cochrane Database Syst Rev. 2022 Oct 21;10(10):CD012157. doi: 10.1002/14651858.CD012157.pub2.

Skånland SS, Cieślar-Pobuda A. Off-label uses of drugs for depression. Eur J Pharmacol. 2019 Dec 15;865:172732. doi: 10.1016/j.ejphar.2019.172732.

López-Muñoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009;15(14):1563-86. doi: 10.2174/138161209788168001.

Bunney WE Jr, Davis JM. Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry. 1965 Dec;13(6):483-94. doi: 10.1001/archpsyc.1965.01730060001001.

Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry. 2000;61 Suppl 6:7-11. PMID: 10775018.

Shore PA, Pletscher A, Tomich EG, Carlsson A, Kuntzman R, Brodie BB. Role of brain serotonin in reserpine action. Ann NY Ac Sci. 1957;66:609–17. doi: 10.1111/j.1749-6632.1957.tb40751.x.

Lamichhane S, Seo JE, Jeong JH, Lee S, Lee S. Ideal animal models according to multifaceted mechanisms and peculiarities in neurological disorders: present and challenges. Arch Pharm Res. 2025 Jan;48(1):62-88. doi: 10.1007/s12272-024-01527-9.

Sheffler ZM, Patel P, Abdijadid S. Antidepressants. 2023 May 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. PMID: 30844209.

Castanheira S, Gomes CV, Bicker J, Fortuna A. Novel mechanisms underlying rapid-acting antidepressants: ketamine-like compounds, neurosteroid GABAkines, and psychedelics. Drug Discov Today. 2025 Jun;30(6):104371. doi: 10.1016/j.drudis.2025.104371.

Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2023 Aug;28(8):3243-56. doi: 10.1038/s41380-022-01661-0.

Dezfouli RA, Hosseinpour A, Ketabforoush S, Mohammadi MR, Shahrbabaki ME, Kiani A, et al. Efficacy, safety, and tolerability of serotonin‑norepinephrine reuptake inhibitors in controlling ADHD symptoms: a systematic review and meta‑analysis. Middle East Curr Psychiatry. 2024;31:8. doi: 10.1186/s43045‑024‑00400‑1.

Stahl SM, Grady MM, Moret C, Briley M. SNRIs: their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr. 2005 Sep;10(9):732-47. doi: 10.1017/s1092852900019726.

Hu T, Yu Z, Zhao J, Meng Y, Salomon K, Bai Q, et al. Transport and inhibition mechanisms of the human noradrenaline transporter. Nature. 2024 Aug;632(8026):930-7. doi: 10.1038/s41586-024-07638-z.

Ju L, Yang J, Zhu T, Liu P, Yang J. BDNF-TrkB signaling-mediated upregulation of Narp is involved in the antidepressant-like effects of (2R,6R)-hydroxynorketamine in a chronic restraint stress mouse model. BMC Psychiatry. 2022 Mar 15;22(1):182. doi: 10.1186/s12888-022-03838-x.

Deodhar M, Rihani SBA, Darakjian L, Turgeon J, Michaud V. Assessing the mechanism of fluoxetine-mediated CYP2D6 inhibition. Pharmaceutics. 2021 Jan 23;13(2):148. doi: 10.3390/pharmaceutics13020148.

Ngcobo NN. Influence of ageing on the pharmacodynamics and pharmacokinetics of chronically administered medicines in geriatric patients: a review. Clin Pharmacokinet. 2025 Mar;64(3):335-367. doi: 10.1007/s40262-024-01466-0.

Preskorn S. Targeted pharmacotherapy in depression management: comparative pharmacokinetics of fluoxetine, paroxetine and sertraline. Int Clin Psychopharmacol. 1994 Jun;9 Suppl 3:13-9. doi: 10.1142/9789814440912_0082.

Hemeryck A, Belpaire FM. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab. 2002 Feb;3(1):13-37. doi: 10.2174/1389200023338017.

Eslami M, Monemi M, Nazari MA, Azami MH, Shariat Rad P, Oksenych V, Naderian R. The anti-inflammatory potential of tricyclic antidepressants (tcas): a novel therapeutic approach to atherosclerosis pathophysiology. Pharmaceuticals (Basel). 2025 Jan 31;18(2):197. doi: 10.3390/ph18020197.

Mitchell DC, Kuljanin M, Li J, Van Vranken JG, Bulloch N, Schweppe DK, et al. A proteome-wide atlas of drug mechanism of action. Nat Biotechnol. 2023 Jun;41(6):845-857. doi: 10.1038/s41587-022-01539-0

Moraczewski J, Awosika AO, Aedma KK. Tricyclic Antidepressants. [Updated 17-Aug-2023]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557791.

Kawczak P, Feszak I, Bączek T. Ketamine, Esketamine, and Arketamine: Their mechanisms of action and applications in the treatment of depression and alleviation of depressive symptoms. Biomedicines. 2024 Oct 9;12(10):2283. doi: 10.3390/biomedicines12102283.

Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010 Aug 20;329(5994):959-64. doi: 10.1126/science.1190287.

Chaki S, Watanabe M. Antidepressants in the post-ketamine Era: Pharmacological approaches targeting the glutamatergic system. Neuropharmacology. 2023 Feb 1;223:109348. doi: 10.1016/j.neuropharm.2022.109348.

Penson PE, McCloskey AP. Therapeutic drug monitoring: applying the 'Goldilocks Principle' to clinical pharmacology. Expert Rev Clin Pharmacol. 2023 Jul-Dec;16(8):685-6. doi: 10.1080/17512433.2023.2242161.

Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018 Apr 7;391(10128):1357-66. doi: 10.1016/S0140-6736(17)32802-7.

Liang WS, Beaulieu-Jones B, Smalley S, Snyder M, Goetz LH, Schork NJ. Emerging therapeutic drug monitoring technologies: considerations and opportunities in precision medicine. Front Pharmacol. 2024 Mar 13;15:1348112. doi: 10.3389/fphar.2024.1348112.

Pedraza-Sanabria S, Dodd S, Giraldo-Cadavid LF, Whittingham K, Bustos RH. Existing and Emerging Technologies for Therapeutic Monitoring of Lithium: A Scoping Review. J Clin Psychopharmacol. 2024 May-Jun 01;44(3):291-296. doi: 10.1097/JCP.0000000000001835.

Funk CSM, Hart XM, Gründer G, Hiemke C, Elsner B, Kreutz R, Riemer TG. Is therapeutic drug monitoring relevant for antidepressant drug therapy? Implications from a systematic review and meta-analysis with focus on moderating factors. Front Psychiatry. 2022 Feb 21;13:826138. doi: 10.3389/fpsyt.2022.826138.

Charfi R, Ben Sassi M, Gaies E, Jebabli N, Daghfous R, Trabelsi S. Digoxin therapeutic drug monitoring: age influence and adverse events. Tunis Med. 2020 Jan;98(1):35-40. PMID: 32395775.

Göksel Y, Zor K, Rindzevicius T, Thorhauge Als-Nielsen BE, Schmiegelow K, Boisen A. Quantification of methotrexate in human serum using surface-enhanced raman scattering-toward therapeutic drug monitoring. ACS Sens. 2021 Jul 23;6(7):2664-73. doi: 10.1021/acssensors.1c00643.

Piacentino D, Bianchi E, De Donatis D, Florio V, Conca A. Therapeutic drug monitoring of antidepressants: an underused but potentially valuable tool in primary care. Front Psychiatry. 2022 Mar 29;13:867840. doi: 10.3389/fpsyt.2022.867840.

Sørensen A, Ruhé HG, Munkholm K. The relationship between dose and serotonin transporter occupancy of antidepressants-a systematic review. Mol Psychiatry. 2022 Jan;27(1):192-201. doi: 10.1038/s41380-021-01285-w

Hart XM, Spangemacher M, Defert J, Uchida H, Gründer G. Update lessons from PET imaging part II: a systematic critical review on therapeutic plasma concentrations of antidepressants. Ther Drug Monit. 2024 Apr 1;46(2):155-169. doi: 10.1097/FTD.0000000000001142

Reis M, Lundmark J, Björk H, Bengtsson F. Therapeutic drug monitoring of racemic venlafaxine and its main metabolites in an everyday clinical setting. Ther Drug Monit. 2002 Aug;24(4):545-53. doi: 10.1097/00007691-200208000-00014.

Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry. 2018 Jan;51(1-02):9-62. doi: 10.1055/s-0043-116492.

Ostad Haji E, Hiemke C, Pfuhlmann B. Therapeutic drug monitoring for antidepressant drug treatment. Curr Pharm Des. 2012;18(36):5818-27. doi: 10.2174/138161212803523699.

Eichentopf L, Hiemke C, Conca A, Engelmann J, Gerlach M, Havemann-Reinecke U, et al. Systematic review and meta-analysis on the therapeutic reference range for escitalopram: Blood concentrations, clinical effects and serotonin transporter occupancy. Front Psychiatry. 2022 Oct 17;13:972141. doi: 10.3389/fpsyt.2022.972141.

Jukić MM, Haslemo T, Molden E, Ingelman-Sundberg M. Impact of CYP2C19 Genotype on Escitalopram Exposure and Therapeutic Failure: A Retrospective Study Based on 2,087 Patients. Am J Psychiatry. 2018 May 1;175(5):463-470. doi: 10.1176/appi.ajp.2017.17050550.

Frye MA, Nemeroff CB. Pharmacogenomic testing for antidepressant treatment selection: lessons learned and roadmap forward. Neuropsychopharmacology. 2024 Jan;49(1):282-284. doi: 10.1038/s41386-023-01667-4.

Hodgson K, Tansey KE, Uher R, Dernovšek MZ, Mors O, Hauser J, et al. Exploring the role of drug-metabolising enzymes in antidepressant side effects. Psychopharmacology (Berl). 2015 Jul;232(14):2609-17. doi: 10.1007/s00213-015-3898-x.

Wong WLE, Fabbri C, Laplace B, Li D, van Westrhenen R, Lewis CM, Dawe GS, Young AH. The effects of CYP2C19 genotype on proxies of SSRI antidepressant response in the UK Biobank. Pharmaceuticals (Basel). 2023 Sep 11;16(9):1277. doi: 10.3390/ph16091277.

Alchakee A, Ahmed M, Eldohaji L, Alhaj H, Saber-Ayad M. Pharmacogenomics in psychiatry practice: the value and the challenges. Int J Mol Sci. 2022 Nov 3;23(21):13485. doi: 10.3390/ijms232113485.

Wyska E. Pharmacokinetic considerations for current state-of-the-art antidepressants. Expert Opin Drug Metab Toxicol. 2019 Oct;15(10):831-847. doi: 10.1080/17425255.2019.1669560.

Brunoni AR, Carracedo A, Amigo OM, Pellicer AL, Talib L, Carvalho AF, et al. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: ancillary analysis of a double-blind, placebo-controlled trial. Braz J Psychiatry. 2020 Apr;42(2):128-135. doi: 10.1590/1516-4446-2019-0620.

Krout D, Rodriquez M, Brose SA, Golovko MY, Henry LK, Thompson BJ. Inhibition of the serotonin transporter is altered by metabolites of selective serotonin and norepinephrine reuptake inhibitors and represents a caution to acute or chronic treatment paradigms. ACS Chem Neurosci. 2017 May 17;8(5):1011-1018. doi: 10.1021/acschemneuro.6b00343.

Altar CA, Carhart JM, Allen JD, Hall-Flavin DK, Dechairo BM, Winner JG. Clinical validity: Combinatorial pharmacogenomics predicts antidepressant responses and healthcare utilizations better than single gene phenotypes. Pharmacogenomics J. 2015 Oct;15(5):443-51. doi: 10.1038/tpj.2014.85.

Rothschild AJ, Parikh SV, Hain D, Law R, Thase ME, Dunlop BW, et al. Clinical validation of combinatorial pharmacogenomic testing and single-gene guidelines in predicting psychotropic medication blood levels and clinical outcomes in patients with depression. Psychiatry Res. 2021 Feb;296:113649. doi: 10.1016/j.psychres.2020.113649.

Campos AI, Byrne EM, Mitchell BL, Wray NR, Lind PA, Licinio J, Medland SE, et al. Impact of CYP2C19 metaboliser status on SSRI response: a retrospective study of 9500 participants of the Australian Genetics of Depression Study. Pharmacogenomics J. 2022 Mar;22(2):130-135. doi: 10.1038/s41397-022-00267-7.

Brouwer JMJL, Wardenaar KJ, Nolte IM, Liemburg EJ, Bet PM, Snieder H, et al. Association of CYP2D6 and CYP2C19 metabolizer status with switching and discontinuing antidepressant drugs: an exploratory study. BMC Psychiatry. 2024 May 27;24(1):394. doi: 10.1186/s12888-024-05764-6.

Published
2025/10/31
Section
Review article