Impact of Oxidative Stress on Patients Before and After Exposure to Sevoflurane and Desflurane Inhalational Anaesthesia

Keywords: Sevoflurane, Desflurane, Antioxidants, Oxidative stress, Anaesthesia, endotracheal

Abstract


Background/Aim: Oxidative stress, which is characterised by an imbalance between reactive oxygen species (ROS) production and antioxidant defences, is a critical factor influencing surgical outcomes. Inhalational anaesthetics such as sevoflurane and desflurane are widely used, yet their differential effects on oxidative stress remain a subject of investigation. This study aimed to evaluate the impact of these anaesthetic agents on oxidative stress biomarkers in surgical patients.

Methods: The study included a total of 60 patients who underwent laparoscopic cholecystectomy. The patients were categorised into two categories based on the type of anaesthetic they received: Sevoflurane (n = 30) and desflurane (n = 30). Blood samples were collected pre- and post-anaesthesia to assess oxidative stress markers, including glutathione (GSH), total antioxidant capacity (TAC), total oxidative status (TOS) and malondialdehyde (MDA). Statistical analyses were performed using an independent t-test, with a significance threshold of p < 0.05.

Results: Sevoflurane and desflurane both induced significant oxidative stress, but desflurane exhibited a more pronounced effect. Post-anaesthesia, the desflurane group showed a greater decrease in GSH (ΔGSH: -493.48 ± 153.85 vs. -245.77 ± 201.89; p < 0.0001) and TAC (ΔTAC: -0.75 ± 0.13 vs. -0.35 ± 0.27; p < 0.0001), along with a higher increase in MDA (ΔMDA: 2.06 ± 0.74 vs. 0.77 ± 0.47; p < 0.0001). Although both anaesthetics elevated TOS, the increase was more substantial with desflurane.

Conclusion: Desflurane induces significantly higher oxidative stress compared to sevoflurane, likely due to differences in their metabolic pathways and mitochondrial effects. These findings highlight the need for tailored anaesthetic strategies, particularly for patients with pre-existing oxidative stress conditions. Future research should explore potential mitigation strategies, including antioxidant supplementation and multimodal anaesthesia approaches, to optimise perioperative care.

References

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018 Apr 26;13:757-72. doi: 10.2147/CIA.S158513.

Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging hallmarks and the role of oxidative stress. Antioxidants (Basel). 2023 Mar 6;12(3):651. doi: 10.3390/antiox12030651.

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015 Jan;30(1):11-26. doi: 10.1007/s12291-014-0446-0.

Tomsič K, Nemec Svete A. A mini-review of the effects of inhalational and intravenous anesthetics on oxidative stress in dogs. Front Vet Sci. 2022 Sep 12;9:987536. doi: 10.3389/fvets.2022.987536.

Senoner T, Velik-Salchner C, Luckner G, Tauber H. Anesthesia-induced oxidative stress: are there differences between intravenous and inhaled anesthetics? Oxid Med Cell Longev. 2021 Nov 27;2021:8782387. doi: 10.1155/2021/8782387.

Burgos-Santamaría A, Rodríguez-Rodríguez P, Arnalich-Montiel A, Arribas SM, Fernández-Riveira C, Barrio-Pérez IM, et al. OXY-SCORE and volatile anesthetics: a new perspective of oxidative stress in endovascular aneurysm repair-a randomized clinical trial. Int J Mol Sci. 2024 Oct 7;25(19):10770. doi: 10.3390/ijms251910770.

Castillo R, Rodrigo R, Perez F, Cereceda M, Asenjo R, Zamorano Jet al. Antioxidant therapy reduces oxidative and inflammatory tissue damage in patients subjected to cardiac surgery with extracorporeal circulation. Basic Clin Pharmacol Toxicol. 2011 Apr;108(4):256-62. doi: 10.1111/j.1742-7843.2010.00651.x.

Yalcin S, Aydoğan H, Yuce HH, Kucuk A, Karahan MA, Vural M, Camuzcuoğlu A, Aksoy N. Effects of sevoflurane and desflurane on oxidative stress during general anesthesia for elective cesarean section. Wien Klin Wochenschr. 2013 Aug;125(15-16):467-73. doi: 10.1007/s00508-013-0397-0.

Kaşıkara H, Dumanlı Özcan AT, Biçer CK, Şenat A, Yalçın A, Altın C, Mustafa Aksoy Ş, But A. The effect of low flow anesthesia with sevoflurane on oxidative status: A prospective, randomized study. Saudi Med J. 2022 Mar;43(3):227-35. doi: 10.15537/smj.2022.43.3.20210876.

Zhi‑Bin Zhou ZB, Yang XY, Tang Y, Zhou X, Zhou LH, Feng X. Subclinical concentrations of sevoflurane reduce oxidative stress but do not prevent hippocampal apoptosis. Mol Med Reports. 2016;14:721-7. doi: 10.3892/mmr.2016.5336.

Zhang DX, Chen YF, Campbell WB, Zou AP, Gross GJ, Li PL. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res. 2001;89:1177–83. doi: 10.1161/hh2401.101752.

Sedlic F, Pravdic D, Ljubkovic M, Marinovic J, Stadnicka A, Bosnjak ZJ. Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth Analg. 2009 Aug;109(2):405-11. doi: 10.1213/ane.0b013e3181a93ad9.

Danesh H, Ziamajidi N, Mesbah-Namin SA, Nafisi N, Abbasalipourkabir R. Association between oxidative stress parameters and hematological indices in breast cancer patients. Int J Breast Cancer. 2022 Oct 3;2022:1459410. doi: 10.1155/2022/1459410.

Freire Boullosa L, Van Loenhout J, Flieswasser T, De Waele J, Hermans C, Lambrechts H, et al. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biol. 2021 Jun;42:101949. doi: 10.1016/j.redox.2021.101949.

Mahdi MA, Dawood YJ, Sabah RS, Abd Al-Rahman SA. Evaluation of oxidative stress, anti-oxidant, vitamins and co-factor elements in the sera of gastric cancer in Iraqi patients. Asian Pac J Cancer Prev. 2024 Oct 1;25(10):3651-3660. doi: 10.31557/APJCP.2024.25.10.3651.

Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004 Feb;37(2):112-9. doi: 10.1016/j.clinbiochem.2003.10.014.

D'souza D, Subhas BG, Shetty SR, Balan P. Estimation of serum malondialdehyde in potentially malignant disorders and post-antioxidant treated patients: A biochemical study. Contemp Clin Dent. 2012 Oct;3(4):448-51. doi: 10.4103/0976-237X.107438.

Ge X, Zuo Y, Xie J, Li X, Li Y, Thirupathi A, et al. A new mechanism of POCD caused by sevoflurane in mice: cognitive impairment induced by cross-dysfunction of iron and glucose metabolism. Aging (Albany NY). 2021 Sep 21;13(18):22375-22389. doi: 10.18632/aging.203544.

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine (5th ed.). Oxford, UK: Oxford University Press; 2015.

Zivkovic A, Jotic A, Dozic I, Randjelovic S, Cirkovic I, Medic B, et al. Role of oxidative stress and inflammation in postoperative complications and quality of life after laryngeal cancer surgery. Cells. 2024 Nov 23;13(23):1951. doi: 10.3390/cells13231951.

Pang Y, Li Y, Zhang Y, Wang H, Lang J, Han L, et al. Effects of inflammation and oxidative stress on postoperative delirium in cardiac surgery. Front Cardiovasc Med. 2022 Nov 22;9:1049600. doi: 10.3389/fcvm.2022.1049600.

Watt SK, Hasselbalch HC, Skov V, Kjær L, Thomassen M, Kruse TA, et al. Increased oxidative stress with substantial dysregulation of genes related to oxidative stress and DNA repair after laparoscopic colon cancer surgery. Surg Oncol. 2020 Dec;35:71-8. doi: 10.1016/j.suronc.2020.06.009.

Qiu L, Li H, Li B, Ek J, Zhang X, Chen Y, et al. Sevoflurane exposure in early life: mitochondrial dysfunction and neurotoxicity in immature rat brains without long-term memory loss. Sci Rep. 2024 Nov 20;14(1):28747. doi: 10.1038/s41598-024-79150-3.

Cannesson M, Kain Z. Enhanced recovery after surgery versus perioperative surgical home: is it all in the name? Anesth Analg. 2014 May;118(5):901-2. doi: 10.1213/ANE.0000000000000177.

Yuan J, Zhang Y. Sevoflurane reduces inflammatory factor expression, increases viability and inhibits apoptosis of lung cells in acute lung injury by microRNA-34a-3p upregulation and STAT1 downregulation. Chem Biol Interact. 2020 May 1;322:109027. doi: 10.1016/j.cbi.2020.109027..

Jiang Y, Zhu P, Gao Y, Wang A. miR‑379‑5p inhibits cell proliferation and promotes cell apoptosis in non‑small cell lung cancer by targeting β‑arrestin‑1. Mol Med Rep. 2020 Dec;22(6):4499-4508. doi: 10.3892/mmr.2020.11553.

Ozcan ATD, Doger C, Ozturk L, Yungul A, Kurtsahin M, Neselioglu S, e al. Comparison of the effects of sevoflurane and desflurane on thiol-disulfide homeostasis in patients undergoing laparoscopic cholecystectomy. Eurasian J Med. 2019 Feb;51(1):70-74. doi: 10.5152/eurasianjmed.2019.18299.

Riess ML, Kevin LG, McCormick J, Jiang MT, Rhodes SS, Stowe DF. Anesthetic preconditioning: the role of free radicals in sevoflurane-induced attenuation of mitochondrial electron transport in Guinea pig isolated hearts. Anesth Analg. 2005;100:46–53. doi: 10.1213/01.ANE.0000139346.76784.72.

Tanaka K, Weihrauch D, Kehl F, Ludwig LM, LaDisa JF, Jr, et al. Mechanism of preconditioning by isoflurane in rabbits: a direct role for reactive oxygen species. Anesthesiology. 2002;97:1485–90. doi: 10.1097/00000542-200212000-00021.

Hanouz JL, Zhu L, Lemoine S, Durand C, Lepage O, Massetti M, et al. Reactive oxygen species mediate sevoflurane- and desflurane-induced preconditioning in isolated human right atria in vitro. Anesth Analg. 2007;105:1534–9. doi: 10.1213/01.ane.0000286170.22307.1a.

Lv X, Wang ZM, Huang SD, Song SH, Wu FX, et al. Emulsified isoflurane preconditioning reduces lung injury induced by hepatic ischemia/reperfusion in rats. Int J Med Sci. 2011;8(5):353-61. doi: 10.7150/ijms.8.353.

Saraçoğlu KT, Şimşek T, Gürbüz H, Geyik FD, Kale E, Baydili KN, et al. Comparison of the effects of sevoflurane and desflurane on endothelial glycocalyx in patients undergoing laparoscopic hysterectomy: a randomized, double-blind trial. Turk J Anaesthesiol Reanim. 2024 May 3;52(2):76-82. doi: 10.4274/TJAR.2024.231323.

Lee YM, Song BC, Yeum KJ. Impact of volatile anesthetics on oxidative stress and inflammation. Biomed Res Int. 2015;2015:242709. doi: 10.1155/2015/242709.

van Harten AE, Scheeren TW, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia. 2012 Mar;67(3):280-93. doi: 10.1111/j.1365-2044.2011.07008.x.

Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013 Oct 30;14(11):21525-50. doi: 10.3390/ijms141121525.

Jaruga K, Puścion-Jakubik A, Jakubów P. Regional anesthesia: a narrative review of impact on oxidative stress biomarkers. J Clin Med. 2025 Oct 23;14(21):7503. doi: 10.3390/jcm14217503.

Ritiu SA, Rogobete AF, Sandesc D, Bedreag OH, Papurica M, Popovici SE, et al. The impact of general anesthesia on redox stability and epigenetic inflammation pathways: crosstalk on perioperative antioxidant therapy. Cells. 2022 Jun 9;11(12):1880. doi: 10.3390/cells11121880.

Published
2025/12/31
Section
Original article