Recent Advances in Natural Hydrolates for Burn Care: Anti-Inflammatory, Antioxidant and Antimicrobial Perspectives
Abstract
Burn injuries represent a significant global health burden, characterised by complex pathophysiology that extends far beyond the initial thermal insult. The healing process is profoundly influenced by a cascade of molecular and cellular events, including acute and chronic inflammation, oxidative stress and microbial colonisation. These interconnected challenges frequently lead to severe complications such as delayed wound closure, impaired tissue regeneration and pathological scarring. A critical and escalating issue in contemporary burn care is the pervasive rise of antibiotic resistance, which severely compromises treatment efficacy, prolongs hospital stays and significantly increases both patient morbidity and mortality. This literature review critically examines the multifaceted aspects of burn wound healing, focusing on the intricate interplay between inflammation, oxidative stress and infection. It delves into the molecular mechanisms underlying these processes, including the dual role of reactive oxygen species (ROS) in cellular signalling and tissue damage and the dysregulation of key pathways that perpetuate chronic inflammation and promote fibrosis. The alarming rise of multidrug-resistant pathogens (eg Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, etc) further exacerbates these challenges, highlighting the urgent need for novel therapeutic strategies. The limitations of conventional therapies in precisely modulating these complex biological processes and effectively countering resistant microorganisms are thoroughly discussed. Special attention is given to the therapeutic potential of natural compounds, particularly hydrolates, as innovative and complementary interventions. Current evidence in specific literature demonstrates their anti-inflammatory, antioxidant and antimicrobial properties, supporting their capacity to create a favourable healing microenvironment and mitigate the impact of antibiotic resistance. By elucidating the mechanisms through which these botanical extracts may influence wound healing, this review seeks to identify critical knowledge gaps and provide a robust foundation for future research into integrative approaches that can optimise burn wound outcomes and address urgent clinical needs.
References
WHO. Burns [Internet]. [Cited: 2-Jul-25]. Available at: https://www.who.int/news-room/fact-sheets/detail/burns.
Casey JA, Gu YM, Schwarz L, Frankland TB, Wilner LB, McBrien H, et al. The 2025 Los Angeles wildfires and outpatient acute healthcare utilization. medRxiv [Preprint]. 2025 Mar 15:2025.03.13.25323617. doi: 10.1101/2025.03.13.25323617.
Burgess M, Valdera F, Varon D, Kankuri E, Nuutila K. The immune and regenerative response to burn injury. Cells. 2022 Sep 29;11(19):3073. doi: 10.3390/cells11193073.
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: a growing serious threat for global public health. healthcare (Basel). 2023 Jul 5;11(13):1946. doi: 10.3390/healthcare11131946.
Vinaik R, Barayan D, Shahrokhi S, Jeschke MG. Management and prevention of drug resistant infections in burn patients. Expert Rev Anti Infect Ther. 2019 Aug;17(8):607-19. doi: 10.1080/14787210.2019.1648208.
Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C, et al. Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules. 2022 Jan 18;27(3):616. doi: 10.3390/molecules27030616.
Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One. 2011 Feb 16;6(2):e17038. doi: 10.1371/journal.pone.0017038.
Romanowski KS, Carson J, Pape K, Bernal E, Sharar S, Wiechman S, et al. American Burn Association Guidelines on the Management of Acute Pain in the Adult Burn Patient: a review of the literature, a compilation of expert opinion, and next steps. J Burn Care Res. 2020 Nov 30;41(6):1129-51. doi: 10.1093/jbcr/iraa119.
Cartotto R, Johnson LS, Savetamal A, Greenhalgh D, Kubasiak JC, Pham TN, et al. American Burn Association Clinical Practice Guidelines on Burn Shock Resuscitation. J Burn Care Res. 2024 May 6;45(3):565-89. doi: 10.1093/jbcr/irad125.
Lee F, Wong P, Hill F, Burgner D, Taylor R. Evidence behind the WHO guidelines: hospital care for children: what is the role of prophylactic antibiotics in the management of burns? J Trop Pediatr. 2009 Apr;55(2):73-7. doi: 10.1093/tropej/fmp017.
Smolle C, Cambiaso-Daniel J, Forbes AA, Wurzer P, Hundeshagen G, Branski LK, et al. Recent trends in burn epidemiology worldwide: A systematic review. Burns. 2017 Mar;43(2):249-257. doi: 10.1016/j.burns.2016.08.013.
Osmokrovic A, Stojkovska J, Krunic T, Petrovic P, Lazic V, Zvicer J. Current state and advances in antimicrobial strategies for burn wound dressings: from metal-based antimicrobials and natural bioactive agents to future perspectives. Int J Mol Sci. 2025 May 5;26(9):4381. doi: 10.3390/ijms26094381.
Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound healing properties of natural products: mechanisms of action. Molecules. 2023 Jan 6;28(2):598. doi: 10.3390/molecules28020598.
Smiljanić K, Prodić I, Trifunovic S, Krstić Ristivojević M, Aćimović M, Stanković Jeremić J, et al. Multistep approach points to compounds responsible for the biological activity and safety of hydrolates from nine lamiaceae medicinal plants on human skin fibroblasts. Antioxidants (Basel). 2023 Nov 9;12(11):1988. doi: 10.3390/antiox12111988. PMID: 38001841; PMCID: PMC10669667
Serra D, Bellu E, Garroni G, Cruciani S, Sarais G, Dessi D, et al. Hydrolat of Helichrysum italicum promotes tissue regeneration during wound healing. Physiol Res. 2023 Dec 31;72(6):809-818. doi: 10.33549/physiolres.935101.
Demyashkin GA, Parshenkov MA, Tokov AA, Sataieva TP, Shevkoplyas LA, Said BS, et al. Therapeutic efficacy of plant‑based hydrogels in burn wound healing: focus on Satureja montana L. and Origanum vulgare L. Scripta Med. 2025;1:27‑32. doi: 10.5937/scriptamed56-56050.
Broughton G 2nd, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006 Jun;117(7 Suppl):12S-34S. doi: 10.1097/01.prs.0000225430.42531.c2.
Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, Baj J, Radzikowska-Büchner E, Przekora A. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. Int J Environ Res Public Health. 2022 Jan 25;19(3):1338. doi: 10.3390/ijerph19031338.
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017 Dec 14;9(6):7204-18. doi: 10.18632/oncotarget.23208.
Mulder PPG, Vlig M, Fasse E, Stoop MM, Pijpe A, van Zuijlen PPM, et al. Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Front Immunol. 2022 Nov 14;13:1034420. doi: 10.3389/fimmu.2022.1034420.
Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol. 2024 Feb 15;15:1345779. doi: 10.3389/fphar.2024.1345779.
Janakiram NB, Valerio MS, Goldman SM, Dearth CL. The Role of the inflammatory response in mediating functional recovery following composite tissue injuries. Int J Mol Sci. 2021 Dec 17;22(24):13552. doi: 10.3390/ijms222413552.
Du W, Hu H, Zhang J, Bao G, Chen R, Quan R. The mechanism of MAPK signal transduction pathway involved with electroacupuncture treatment for different diseases. Evid Based Complement Alternat Med. 2019 Jul 31;2019:8138017. doi: 10.1155/2019/8138017.
Liu T, Zhang L, Joo D, Sun SC. NF-kB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023–. doi: 10.1038/sigtrans.2017.23.
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002 Dec 6;298(5600):1911-2. doi: 10.1126/science.1072682.
Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017 Feb;14(1):89-96. doi: 10.1111/iwj.12557.
Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003 Apr;15(2):247-54. doi: 10.1016/s0955-0674(03)00002-4.
Chen X, Tian X, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2011 Sep;40(9):4783-804. doi: 10.1039/c1cs15037e.
Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants (Basel). 2018 Jul 24;7(8):98. doi: 10.3390/antiox7080098.
Remigante A, Morabito R. Cellular and molecular mechanisms in oxidative stress-related diseases 2.0/3.0. Int J Mol Sci. 2023 Nov 6;24(21):16018. doi: 10.3390/ijms242116018.
Liu Y, Yang X, Liu Y, Jiang T, Ren S, Chen J, et al. NRF2 signalling pathway: New insights and progress in the field of wound healing. J Cell Mol Med. 2021 Jun 18;25(13):5857–68. doi: 10.1111/jcmm.16597.
Süntar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, Saso L. Regulatory role of nrf2 signaling pathway in wound healing process. Molecules. 2021 Apr 21;26(9):2424. doi: 10.3390/molecules26092424.
Li M, Yu H, Pan H, Zhou X, Ruan Q, Kong D, et al. Nrf2 Suppression delays diabetic wound healing through sustained oxidative stress and inflammation. Front Pharmacol. 2019 Sep 20;10:1099. doi: 10.3389/fphar.2019.01099.
Zhou X, Ruan Q, Ye Z, Chu Z, Xi M, Li M, et al. Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns. 2021 Feb;47(1):133-139. doi: 10.1016/j.burns.2020.10.016.
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008 Sep-Oct;16(5):585-601. doi: 10.1111/j.1524-475X.2008.00410.x.
Gan D, Su Q, Su H, Wu L, Chen J, Han B, Xiang M. Burn ointment promotes cutaneous wound healing by modulating the PI3K/AKT/mTOR signaling pathway. Front Pharmacol. 2021 Mar 8;12:631102. doi: 10.3389/fphar.2021.631102.
Ramhormozi P, Ansari JM, Simorgh S, Asgari HR, Najafi M, Barati M, et al. Simvastatin accelerates the healing process of burn wound in Wistar rats through Akt/mTOR signaling pathway. Ann Anat. 2021 Jul;236:151652. doi: 10.1016/j.aanat.2020.151652.
Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing facilitates corneal wound healing after alkali burns by promoting autophagy via blocking the PI3K/Akt/mTOR signaling pathway. Invest Ophthalmol Vis Sci. 2020 Sep 1;61(11):19. doi: 10.1167/iovs.61.11.19. Erratum in: Invest Ophthalmol Vis Sci. 2021 Mar 1;62(3):19. doi: 10.1167/iovs.62.3.19.
Choi S, Yoon M, Choi KY. Approaches for regenerative healing of cutaneous wound with an emphasis on strategies activating the Wnt/β-Catenin Pathway. Adv Wound Care (New Rochelle). 2022 Feb;11(2):70-86. doi: 10.1089/wound.2020.1284.
Mi Y, Zhong L, Lu S, Hu P, Pan Y, Ma X, et al. Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. J Ethnopharmacol. 2022 May 23;290:115066. doi: 10.1016/j.jep.2022.115066.
Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle). 2013 Jun;2(5):215-224. doi: 10.1089/wound.2012.0406.
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burns Trauma. 2012;2(1):18-28. PMID: 22928164.
Gabriel VA. Transforming growth factor-beta and angiotensin in fibrosis and burn injuries. J Burn Care Res. 2009 May-Jun;30(3):471-81. doi: 10.1097/BCR.0b013e3181a28ddb.
Grubbs H, Manna B. Wound Physiology. [Updated 2023 May 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK518964.
Ladak A, Tredget EE. Pathophysiology and management of the burn scar. Clin Plast Surg. 2009 Oct;36(4):661-74. doi: 10.1016/j.cps.2009.05.014.
Verhaegen PD, van Zuijlen PP, Pennings NM, van Marle J, Niessen FB, van der Horst CM, Middelkoop E. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair Regen. 2009 Sep-Oct;17(5):649-56. doi: 10.1111/j.1524-475X.2009.00533.x.
Machesney M, Tidman N, Waseem A, Kirby L, Leigh I. Activated keratinocytes in the epidermis of hypertrophic scars. Am J Pathol. 1998 May;152(5):1133-41. PMID: 9588880.
Romanowski KS, Sen S. Wound healing in older adults with severe burns: Clinical treatment considerations and challenges. Burns Open. 2022 Apr;6(2):57-64. doi: 10.1016/j.burnso.2022.01.002.
Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020 Feb 13;6(1):11. doi: 10.1038/s41572-020-0145-5.
Gao Y, Gong B, Chen Z, Song J, Xu N, Weng Z. Damage-associated molecular patterns, a class of potential psoriasis drug targets. Int J Mol Sci. 2024 Jan 7;25(2):771. doi: 10.3390/ijms25020771.
Rani M, Nicholson SE, Zhang Q, Schwacha MG. Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation. Burns. 2017 Mar;43(2):297-303. doi: 10.1016/j.burns.2016.10.001.
Radzikowska-Büchner E, Łopuszyńska I, Flieger W, Tobiasz M, Maciejewski R, Flieger J. An overview of recent developments in the management of burn injuries. Int J Mol Sci. 2023 Nov 15;24(22):16357. doi: 10.3390/ijms242216357.
Baddam S, Burns B. Systemic Inflammatory Response Syndrome. 2025 Jun 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31613449
George B, Suchithra TV, Bhatia N. Burn injury induces elevated inflammatory traffic: the role of NF-κB. Inflamm Res. 2021 Jan;70(1):51-65. doi: 10.1007/s00011-020-01426-x.
Potekaev NN, Borzykh OB, Medvedev GV, Pushkin DV, Petrova MM, Petrov AV, et al. The role of extracellular matrix in skin wound healing. J Clin Med. 2021 Dec 18;10(24):5947. doi: 10.3390/jcm10245947.
Hong YK, Chang YH, Lin YC, Chen B, Guevara BEK, Hsu CK. Inflammation in wound healing and pathological scarring. Adv Wound Care (New Rochelle). 2023 May;12(5):288-300. doi: 10.1089/wound.2021.0161.
Sousa AB, Águas AP, Barbosa MA, Barbosa JN. Immunomodulatory biomaterial-based wound dressings advance the healing of chronic wounds via regulating macrophage behavior. Regen Biomater. 2022 Sep 6;9:rbac065. doi: 10.1093/rb/rbac065.
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014 Mar 1;20(7):1126-67. doi: 10.1089/ars.2012.5149.
Zhou J, Fang C, Rong C, Luo T, Liu J, Zhang K. Reactive oxygen species‑sensitive materials: A promising strategy for regulating inflammation and favoring tissue regeneration. Smart Mater Med. 2023;4:427‑46. doi: 10.1016/j.smaim.2023.01.004.
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024 May;98(5):1323-67. doi: 10.1007/s00204-024-03696-4.
Nebbioso M, Franzone F, Lambiase A, Bonfiglio V, Limoli PG, Artico M, et al. Oxidative stress implication in retinal diseases-a review. Antioxidants (Basel). 2022 Sep 10;11(9):1790. doi: 10.3390/antiox11091790.
Lee HS, Kim WJ. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases. Int J Mol Sci. 2022 Sep 11;23(18):10546. doi: 10.3390/ijms231810546.
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol Rev. 2022 Jul;74(3):712-68. doi: 10.1124/pharmrev.121.000349.
Schilrreff P, Alexiev U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. Int J Mol Sci. 2022 Apr 28;23(9):4928. doi: 10.3390/ijms23094928.
Mayorca-Guiliani AE, Leeming DJ, Henriksen K, Mortensen JH, Nielsen SH, Anstee QM, et al. ECM formation and degradation during fibrosis, repair, and regeneration. NPJ Metab Health Dis. 2025 Jun 10;3(1):25. doi: 10.1038/s44324-025-00063-4.
Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015 Jun 12;19:243. doi: 10.1186/s13054-015-0961-2.
Boldeanu L, Boldeanu MV, Bogdan M, Meca AD, Coman CG, Buca BR, et al. Immunological approaches and therapy in burns (Review). Exp Ther Med. 2020 Sep;20(3):2361-7. doi: 10.3892/etm.2020.8932.
Chen ZC, Wu SS, Su WY, Lin YC, Lee YH, Wu WH, et al. Anti-inflammatory and burn injury wound healing properties of the shell of Haliotis diversicolor. BMC Complement Altern Med. 2016 Nov 28;16(1):487. doi: 10.1186/s12906-016-1473-6.
Wang P, Huang S, Hu Z, Yang W, Lan Y, Zhu J, et al. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater. 2019 Dec;100:191-201. doi: 10.1016/j.actbio.2019.10.004.
Demyashkin G, Sataieva T, Shevkoplyas L, Kuevda T, Ahrameeva M, Parshenkov M, et al. Burn wound healing activity of hydroxyethylcellulose gels with different water extracts obtained from various medicinal plants in pseudomonas aeruginosa-infected rabbits. Int J Mol Sci. 2024 Aug 18;25(16):8990. doi: 10.3390/ijms25168990.
Vo V, Haidari H, Cowin AJ, Wagstaff M, Dearman B, Kopecki Z. Dermal substitutes for clinical management of severe burn injuries: Current and future perspectives. Adv Ther. 2025;8(3):2400455. doi: 10.1002/adtp.202400455.
Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol. 2023 Feb;21(2):97-111. doi: 10.1038/s41579-022-00780-3.
Siciliano V, Passerotto RA, Chiuchiarelli M, Leanza GM, Ojetti V. Difficult-to-treat pathogens: a review on the management of multidrug-resistant Staphylococcus epidermidis. Life (Basel). 2023 May 4;13(5):1126. doi: 10.3390/life13051126.
Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, Khan W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int J Hyg Environ Health. 2022 Jul;244:114006. doi: 10.1016/j.ijheh.2022.114006.
Almuhayawi MS, Alruhaili MH, Gattan HS, Alharbi MT, Nagshabandi M, Al Jaouni S, et al. Staphylococcus aureus induced wound infections which antimicrobial resistance, methicillin- and vancomycin-resistant: assessment of emergence and cross sectional study. Infect Drug Resist. 2023 Aug 16;16:5335-5346. doi: 10.2147/IDR.S418681.
Gao L, Abu Kwaik Y. Hijacking of apoptotic pathwaysby bacterial pathogens. Microbes Infect. 2000 Nov;2(14):1705-19. doi: 10.1016/s1286-4579(00)01326-5.
Otto M. Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol. 2009 Aug;7(8):555-67. doi: 10.1038/nrmicro2182.
Mielko KA, Jabłoński SJ, Milczewska J, Sands D, Łukaszewicz M, Młynarz P. Metabolomic studies of Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2019 Nov 7;35(11):178. doi: 10.1007/s11274-019-2739-1.
Salerian AJ. Burn wound infections and Pseudomonas aeruginosa. Burns. 2020 Feb;46(1):257-8. doi: 10.1016/j.burns.2019.07.008.
Santamaría-Corral G, Aguilera-Correa JJ, Esteban J, García-Quintanilla M. Bacteriophage therapy on an in vitro wound model and synergistic effects in combination with beta-lactam antibiotics. Antibiotics (Basel). 2024 Aug 24;13(9):800. doi: 10.3390/antibiotics13090800.
Singh AN, Singh A, Singh SK, Nath G. Klebsiella pneumoniae infections and phage therapy. Indian J Med Microbiol. 2024 Nov-Dec;52:100736. doi: 10.1016/j.ijmmb.2024.100736.
Shoja S, Moosavian M, Rostami S, Farahani A, Peymani A, Ahmadi K, Ebrahimifard N. Dissemination of carbapenem-resistant Acinetobacter baumannii in patients with burn injuries. J Chin Med Assoc. 2017 Apr;80(4):245-52. doi: 10.1016/j.jcma.2016.10.013.
Eggimann P, Pittet D. Postoperative fungal infections. Surg Infect (Larchmt). 2006;7 Suppl 2:S53-6. doi: 10.1089/sur.2006.7.s2-53.
Malinovská Z, Čonková E, Váczi P. Biofilm formation in medically important Candida Species. J Fungi (Basel). 2023 Sep 22;9(10):955. doi: 10.3390/jof9100955.
Roy S, Mukherjee P, Kundu S, Majumder D, Raychaudhuri V, Choudhury L. Microbial infections in burn patients. Acute Crit Care. 2024 May;39(2):214-25. doi: 10.4266/acc.2023.01571.
Norbury W, Herndon DN, Tanksley J, Jeschke MG, Finnerty CC. Infection in burns. Surg Infect (Larchmt). 2016 Apr;17(2):250-5. doi: 10.1089/sur.2013.134.
Ruegsegger L, Xiao J, Naziripour A, Kanumuambidi T, Brown D, Williams F, et al. Multidrug-resistant gram-negative bacteria in burn patients. Antimicrob Agents Chemother. 2022 Sep 20;66(9):e0068822. doi: 10.1128/aac.00688-22.
Ghasemian S, Karami-Zarandi M, Heidari H, Khoshnood S, Kouhsari E, Ghafourian S, et al. Molecular characterizations of antibiotic resistance, biofilm formation, and virulence determinants of Pseudomonas aeruginosa isolated from burn wound infection. J Clin Lab Anal. 2023 Apr;37(4):e24850. doi: 10.1002/jcla.24850.
Zhang Y, Liu X, Wen H, Cheng Z, Zhang Y, Zhang H, et al. Anti-biofilm enzymes-assisted antibiotic therapy against burn wound infection by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2023 Jul 18;67(7):e0030723. doi: 10.1128/aac.00307-23.
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023 Jun 19;11(6):1614. doi: 10.3390/microorganisms11061614. Erratum in: Microorganisms. 2024 Sep 27;12(10):1961. doi: 10.3390/microorganisms12101961.
Abebe AA, Birhanu AG. Methicillin resistant Staphylococcus aureus: molecular mechanisms underlying drug resistance development and novel strategies to combat. Infect Drug Resist. 2023 Dec 14;16:7641-62. doi: 10.2147/IDR.S428103.
Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, van Duin D. Bacterial infections after burn injuries: impact of multidrug resistance. Clin Infect Dis. 2017 Nov 29;65(12):2130-6. doi: 10.1093/cid/cix682.
Elamin WF, Weinberg S, Spoors C, Roberts P, Martin N, Berry P, et al. Multi-drug resistance in burns units-more than just a burning issue. Clin Infect Dis. 2018 Aug 31;67(6):981-2. doi: 10.1093/cid/ciy191.
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, et al. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol. 2024 Aug 16;15:1444781. doi: 10.3389/fphar.2024.1444781.
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: a narrative review. Pharmaceuticals (Basel). 2023 Nov 15;16(11):1615. doi: 10.3390/ph16111615.
Tao S, Chen H, Li N, Wang T, Liang W. The spread of antibiotic resistance genes in vivo model. Can J Infect Dis Med Microbiol. 2022 Jul 18;2022:3348695. doi: 10.1155/2022/3348695.
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021 Oct 12;10(10):1310. doi: 10.3390/pathogens10101310.
Almatroudi A. Biofilm resilience: molecular mechanisms driving antibiotic resistance in clinical contexts. Biology (Basel). 2025 Feb 6;14(2):165. doi: 10.3390/biology14020165.
Almeida HHS, Fernandes IP, Amaral JS, Rodrigues AE, Barreiro MF. Unlocking the potential of hydrosols: transforming essential oil byproducts into valuable resources. molecules. 2024 Sep 30;29(19):4660. doi: 10.3390/molecules29194660.
Değirmenci H, Erkurt H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J Infect Public Health. 2020 Jan;13(1):58-67. doi: 10.1016/j.jiph.2019.06.017.
Ukaegbu K, Allen E, Svoboda KKH. Reactive oxygen species and antioxidants in wound healing: mechanisms and therapeutic potential. Int Wound J. 2025 May;22(5):e70330. doi: 10.1111/iwj.70330.
Michalak M. Plant-derived antioxidants: significance in skin health and the ageing process. Int J Mol Sci. 2022 Jan 6;23(2):585. doi: 10.3390/ijms23020585.
Abbasnia V, Eslimi Esfahani D, Khazdair MR, Oryan S, Foadoddini M. The therapeutic potential of Melissa officinalis L. hydroalcoholic extract and rosmarinic acid in a rat asthmatic model: A study on anti-inflammatory and antioxidant effects. Avicenna J Phytomed. 2024 Mar-Apr;14(2):252-67. doi: 10.22038/AJP.2023.23321.
Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL. The role of antioxidants on wound healing: a review of the current evidence. J Clin Med. 2021 Aug 13;10(16):3558. doi: 10.3390/jcm10163558.
Grigore-Gurgu L, Dumitrașcu L, Aprodu I. Aromatic herbs as a source of bioactive compounds: an overview of their antioxidant capacity, antimicrobial activity, and major applications. Molecules. 2025 Mar 14;30(6):1304. doi: 10.3390/molecules30061304.
Avola R, Granata G, Geraci C, Napoli E, Graziano ACE, Cardile V. Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. Food Chem Toxicol. 2020 Oct;144:111586. doi: 10.1016/j.fct.2020.111586.
Vuko E, Dunkić V, Ruščić M, Nazlić M, Mandić N, Soldo B, et al. Chemical composition and new biological activities of essential oil and hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. Plants (Basel). 2021 May 19;10(5):1014. doi: 10.3390/plants10051014.
Olędzka AJ, Czerwińska ME. Role of plant-derived compounds in the molecular pathways related to inflammation. Int J Mol Sci. 2023 Feb 28;24(5):4666. doi: 10.3390/ijms24054666.
Hagiga A, Dheansa B. Multi-resistant organisms in burn patients: an end or a new beginning. Burns. 2024 Jun;50(5):1045-1052. doi: 10.1016/j.burns.2024.02.024.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
