Advancing Personalised and Precision Medicine Through Artificial Intelligence: Current Insights and Future Directions
Abstract
The convergence of artificial intelligence (AI) and precision medicine is transforming healthcare by introducing a patient-centered, data-driven approach to treatment. Precision medicine, which tailors medical care based on individual characteristics, addresses the complexity and heterogeneity of diseases. The integration of AI into this field has unlocked unprecedented potential for enhancing disease management and advancing personalised care. AI leverages extensive datasets, including genomic sequences, clinical records and molecular profiles, to identify patterns and predict outcomes with remarkable accuracy. Its capabilities extend beyond automation, functioning as a critical tool for informed clinical decision-making. By analyzing complex molecular data, AI enhances diagnostic precision through the detection of subtle biomarkers and anomalies frequently overlooked by traditional methods. Machine learning–powered predictive analytics further empower clinicians by forecasting disease progression and guiding treatment personalisation. Practical applications of AI-driven precision medicine are already evident in clinical settings. From diagnosing rare genetic disorders to optimising drug therapies based on genetic profiles, AI is fundamentally reshaping patient care. However, critical challenges, including ethical considerations, data privacy and the need for transparent algorithms, persist. This review examines the synergistic relationship between AI and precision medicine, highlighting ongoing research, technological innovations and interdisciplinary collaboration. Together, these advancements herald a transformative era in healthcare, paving the way for highly personalised and effective therapeutic strategies.
References
Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194. doi: 10.7861/fhj.2021-0095.
Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-definition medicine. Cell. 2018;172(6):1102-11. doi: 10.1016/j.cell.2017.08.007.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2019;542(7639):115-8. doi: 10.1038/nature21056.
Wang L, Zhao YT. Development and validation of a prediction model for acute kidney injury among patients with acute decompensated heart failure. Front Cardiovasc Med. 2021;8:719307. doi: 10.3389/fcvm.2021.719307.
Fu C, Chen Q. The future of pharmaceuticals: artificial intelligence in drug discovery and development. J Pharm Anal. 2025;15(8):101248. doi: 10.1016/j.jpha.2025.101248.
Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. Skin cancer classification using convolutional neural networks: systematic review. J Eur Acad Dermatol Venereol. 2022;36(4):590–603. doi: 10.1016/j.ejca.2021.06.049.
Vitanza A, D’Onofrio G, Ricciardi F, Sancarlo D, Greco A, Giuliani F. Assistive robots for the elderly: innovative tools to gather health relevant data. In: Consoli S, Reforgiato Recupero D, Petković M, Eds. Data Science for Healthcare. Cham: Springer; 2019. doi: 10.1007/978-3-030-05249-2_7.
Pushkaran AC, Arabi AA. From understanding diseases to drug design: can artificial intelligence bridge the gap? Artif Intell Rev. 2024;57:86. doi: 10.1007/s10462-024-10714-5.
Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, et al. Advancing precision medicine: a review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics. 2024;16(3):332. doi: 10.3390/pharmaceutics16030332.
Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726-736. doi: 10.1056/NEJMoa1502309.
Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944. doi: 10.1371/journal.pone.0174944.
Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1:18. doi: 10.1038/s41746-018-0029-1.
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-5. doi: 10.1056/NEJMp1500523.
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. doi: 10.1371/journal.pmed.1001779.
Fatima G. Precision medicine in fibromyalgia syndrome. In: Precision Medicine and Human Health. 2024;1:286. doi: 10.2174/9789815223583124010014.
Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine. 2018;27:317–28. doi: 10.1016/j.ebiom.2017.12.026.
Ehteshami Bejnordi B, Veta M, van Diest PJ, van Ginneken B. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210. doi: 10.1001/jama.2017.14585.
Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703–15. doi: 10.1038/s41571-019-0252-y.
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005.
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B, et al. Histopathological image analysis: A review. IEEE Rev Biomed Eng. 2019;2:147–71. doi: 10.1109/RBME.2009.2034865.
Ching T, Zhu X, Garmire LX. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14(4):e1006076. doi: 10.1371/journal.pcbi.1006076.
Korbar B, Olofson AM, Miraflor AP, Nicka CM, Suriawinata MA, Torresani L, et al. Deep learning for classification of colorectal polyps on whole-slide images. J Pathol Inform. 2017;8:30. doi: 10.4103/jpi.jpi_34_17.
Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–67. doi: 10.1038/s41591-018-0177-5.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Conf Comput Vis Pattern Recognit. 2016:770–8. doi: 10.1109/CVPR.2016.90.
Hekler A, Utikal JS, Enk AH, Hauschild A. Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer. 2019;115:79–83. doi: 10.1016/j.ejca.2019.04.021.
Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform. 2016;7:29. doi: 10.4103/2153-3539.186902.
Yu KH, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016;7:12474. doi: 10.1038/ncomms12474.
Lu C, Romo-Bucheli D, Wang X, Janowczyk A, Ganesan S, Gilmore H, Madabhushi A. Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab Invest. 2019;99(12):1805-1815. doi: 10.1038/s41374-018-0095-7.
Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2018;142(10):1129-40. doi: 10.5858/arpa.2013-0093-CP.
Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22(5):1589-604. doi: 10.1109/JBHI.2017.2767063.
Pang S, Orgun MA, Yu Z. A novel biomedical image indexing and retrieval system via deep preference learning. Comput Methods Programs Biomed. 2018;158:53–69. doi: 10.1016/j.cmpb.2018.02.003.
Khera R, Haimovich J, Hurley NC, McNamara RL, Rosenthal G, Desai NR, et al. Use of machine learning models to predict death after acute myocardial infarction. JAMA Cardiol. 2021;6(6):633–641. doi: 10.1001/jamacardio.2021.1175.
Longoni C, Bonezzi A, Morewedge CK. The ethical imperative of leadership in artificial intelligence for healthcare. Nat Mach Intell. 2023;5(2):110–2. doi: 10.1038/s42256-022-00558-7.
Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology. 2014;273(1):168–74. doi: 10.1148/radiol.2014170541.
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17. doi: 10.1016/j.csbj.2015.06.006.
Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82. doi: 10.3892/or.2015.4279.
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–510. doi: 10.1038/s41568-018-0016-5.
Komura D, Ishikawa S. Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J. 2018;16:34–42. doi: 10.1016/j.csbj.2018.01.001.
Xing F, Xie Y, Su H, Liu F, Yang L. Deep learning in microscopy image analysis: a survey. IEEE Trans Neural Netw Learn Syst. 2018;29(10):4550–4568. doi: 10.1109/TNNLS.2017.2766168.
Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP, Patel S. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018 Apr;287(1):313–22. doi: 10.1148/radiol.2017170549.
Najjar R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics (Basel). 2023 Aug 25;13(17):2760. doi: 10.3390/diagnostics13172760.
Reis-Filho JS, Kather JN. Overcoming the challenges to implementation of artificial intelligence in pathology. J Natl Cancer Inst. 2023 Jun 8;115(6):608–12. doi: 10.1093/jnci/djad063.
Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst. 2018 Oct 8;42(11):226. doi: 10.1007/s10916-018-1088-1.
Garcia J, Schroder M, Patel R. Clinical artificial intelligence: the regulatory landscape in 2019. Nat Rev Drug Discov. 2018;18(1):46–7. doi: 10.1038/nrd.2018.199.
Kleinberg J, Lakkaraju H, Leskovec J, Ludwig J, Mullainathan S. Human decisions and machine predictions. Q J Econ. 2018;133(1):237–93. doi: 10.1093/qje/qjx032.
Rivero-Moreno Y, Echevarria S, Vidal-Valderrama C, Pianetti L, Cordova-Guilarte J, Navarro-Gonzalez J, et al. Robotic surgery: a comprehensive review of the literature and current trends. Cureus. 2023;15(7):e42370. doi: 10.7759/cureus.42370.
Lanfranco AR, Castellanos AE, Desai JP, Meyers WC. Robotic surgery: a current perspective. Ann Surg. 2004 Jan;239(1):14–21. doi: 10.1097/01.sla.0000103020.19595.
Intuitive Surgical, Inc. da Vinci Surgical System. 2020 [Internet]. [Cited: 1-Aug-25]. Available at: https://www.intuitive.com/en-us/products-and-services/da-vinci.
Ballantyne GH. Robotic surgery, telerobotic surgery, telepresence, and telementoring. Surg Endosc. 2002;16(10):1389-1402. doi: 10.1007/s00464-001-8283-7.
Kim J, Park JJ, Seo DW, Lee SK. Advancements in robotic technology for gastrointestinal endoscopy. Clin Endosc. 2022;55(1):21–30. doi: 10.5946/ce.2021.225.
Al-Hajri A, Al-Tayar BA, Ba-Angood SE, Hizam EA, Shalaan F, Ali GA, et al. Identification of predictive factors for surgical site infections in gastrointestinal surgeries: a retrospective cross-sectional study in a resource-limited setting. F1000Res. 2024;12:733. doi: 10.12688/f1000research.132615.3.
Davis E. Perioperative risk prediction. Br J Hosp Med (Lond). 2021;82(4):1-2. doi: 10.12968/hmed.2020.0664.
Marescaux J, Leroy J, Gagner M, Rubino F, Mutter D, Vix M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413(6854):379-380. doi: 10.1038/35096636.
Kraus T, Loffel M, Schneider J, Kim SJ, Rezaei Y, Palermo G, et al. Reliability of the da Vinci robotic surgical system: a systematic review and pooled analysis of technical failures. World J Urol. 2025;43(1):348. doi: 10.1007/s00345-025-05732-z.
Hu WH, Tang DH, Teng J, Said S, Rohrmann R. Structural health monitoring of a prestressed concrete bridge based on statistical pattern recognition of continuous dynamic measurements over 14 years. Sensors. 2018;18(12):4117. doi: 10.3390/s18124117.
Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23:689. doi: 10.1186/s12909-023-04683-0.
Al-Mistarehi MHA, Mijwil M, Filali Y, Bounabi M, Ali G, Abotaleb M. Artificial intelligence solutions for health 4.0: overcoming challenges and surveying applications. MJAIH. 2023;2023:15-20. doi: 10.58496/MJAIH/2023/003.
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023;15(7):1916. doi: 10.3390/pharmaceutics15071916.
Sussman L, Garcia-Robledo JE, Ordóñez-Reyes C, Forero Y, Mosquera AF, Ruíz-Patiño A, et al. Integration of artificial intelligence and precision oncology in Latin America. Front Med Technol. 2022;4:1007822. doi: 10.3389/fmedt.2022.1007822.
Patel SK, George B, Rai V. Artificial intelligence to decode cancer mechanism: beyond patient stratification for precision oncology. Front Pharmacol. 2020;11:1177. doi: 10.3389/fphar.2020.01177.
Liao J, Li X, Gan Y, Han S, Rong P, Wang W, et al. Artificial intelligence assists precision medicine in cancer treatment. Front Oncol. 2023;12:998222. doi: 10.3389/fonc.2022.998222.
Harmon DM, Sehrawat O, Maanja M, Wight J, Noseworthy PA. Artificial intelligence for the detection and treatment of atrial fibrillation. Arrhythmia Electrophysiol Rev. 2023;12:e12. doi: 10.15420/aer.2022.31.
Buss SJ, Breuninger K, Lehrke S, Voss A, Galuschky C, Lossnitzer D, et al. Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist. JACC Cardiovasc Imaging. 2019;12(8):1540-55. doi: 10.1007/s12471-019-01311-1.
Vrahatis AG, Skolariki K, Krokidis MG, Lazaros K, Exarchos TP, Vlamos P. Revolutionizing the early detection of Alzheimer's disease through non-invasive biomarkers: the role of artificial intelligence and deep learning. Sensors (Basel). 2023;23(9):4184. doi: 10.3390/s23094184.
Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In: Barh D, editor. Artificial Intelligence in Precision Health. Amsterdam: Elsevier; 2020:415–38. doi: 10.1016/B978-0-12-817133-2.00018-5.
Asada K, Komatsu M, Shimoyama R, Takasawa K, Shinkai N, Sakai A, et al. Application of artificial intelligence in COVID-19 diagnosis and therapeutics. J Pers Med. 2021;11(9):886. doi: 10.3390/jpm11090886.
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Corrado G. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–29. doi: 10.1038/s41591-018-0316-z.
Sun X, Zhou W, Qian Y, Pang J, Qian L, Liu W, et al. Artificial intelligence in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur J Med Res. 2023;28:242. doi: 10.1186/s40001-023-01065-y.
Hashemian H, Peto T, Ambrósio R Jr, Lengyel I, Kafieh R, Noori AM, Khorrami-Nejad M. Application of artificial intelligence in ophthalmology: an updated comprehensive review. J Ophthalmic Vis Res. 2024;19(3):354–367. doi: 10.18502/jovr.v19i3.15893.
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. doi: 10.1038/s41591-018-0300-7.
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77. doi: 10.1038/s41573-019-0024-5.
Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303–312. doi: 10.1016/j.media.2016.07.007.
Wang L. Mammography with deep learning for breast cancer detection. Front Oncol. 2024;14:1281922. doi: 10.3389/fonc.2024.1281922.
Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah MH, Budoff MJ, Shaw LJ. Age and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings: results from the international multicenter CONFIRM registry of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2012;59(20):1840–7. doi: 10.1016/j.jacc.2011.02.074.
Turrisi R, Verri A, Barla A. Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices. Front Comput Neurosci. 2024;18:1360095. doi: 10.3389/fncom.2024.1360095.
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524-2530. doi: 10.1021/acs.molpharmaceut.6b00248.
Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. Deep learning for drug-induced liver injury. J Chem Inf Model. 2015;55(10):2085-93. doi: 10.1021/acs.jcim.5b00238.
Bhalla S, Laganà A. Artificial intelligence for precision oncology. Adv Exp Med Biol. 2022;1361:249-68. doi: 10.1007/978-3-030-91836-1_14.
Zhang C, Xu J, Tang R, Yang J, Wang W, Yu X, Shi S. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. J Hematol Oncol. 2023;16(1):114. doi: 10.1186/s13045-023-01499-1.
Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun (Lond). 2021;41(11):1100-15. doi: 10.1002/cac2.12209.
Al Kuwaiti A, Nazer K, Al-Reedy A, Al-Shehri S, Al-Muhanna A, Subbarayalu AV, et al. A review of the role of artificial intelligence in healthcare. J Pers Med. 2023;13(6):951. doi: 10.3390/jpm13060951.
Kumar K, Loebinger MR, Ghafur S. The role of wirelessly observed therapy in improving treatment adherence. Future Healthc J. 2022;9(3):179-82. doi: 10.7861/fhj.2022-0082.
Chen Q, Allot A, Lu Z. Keep up with the latest coronavirus research. Nature. 2020;579(7798):193. doi: 10.1038/d41586-020-00694-1.
Li YH, Li YL, Wei MY, Li GY. Innovation and challenges of artificial intelligence technology in personalized healthcare. Sci Rep. 2024;14(1):18994. doi: 10.1038/s41598-024-70073-7.
Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169(12):866-72. doi: 10.7326/M18-1990.
Madathil NT, Dankar FK, Gergely M, Belkacem AN, Alrabaee S. Revolutionizing healthcare data analytics with federated learning: A comprehensive survey of applications, systems, and future directions. Front Public Health. 2025;13:12213103. doi: 10.1016/j.csbj.2025.06.009.
Char DS, Shah NH, Magnus D. Implementing machine learning in health care—addressing ethical challenges. N Engl J Med. 2018;378(11):981-3. doi: 10.1056/NEJMp1714229.
Beaulieu-Jones BK, Greene CS, Goldstein BA. Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians? NPJ Digit Med. 2021;4(1):62. doi: 10.1038/s41746-021-00433-5.
Fatima G, Alhmadi H, Ali Mahdi A, Hadi N, Fedacko J, Magomedova A, et al. Transforming diagnostics: a comprehensive review of advances in digital pathology. Cureus. 2024;16(10):e71890. doi: 10.7759/cureus.71890.
Wang F, Casalino LP, Khullar D. Deep learning in medicine: promise, progress, and challenges. JAMA Intern Med. 2019;179(3):293-4. doi: 10.1001/jamainternmed.2018.7117.
Blumenthal D, Tavenner M. The “meaningful use” regulation for electronic health records. N Engl J Med. 2010;363(6):501-4. doi: 10.1056/NEJMp1006114.
McCoy TH, Castro VM, Cagan A, Roberson AM, Kohane IS, Perlis RH. Sentiment measured in hospital discharge notes is associated with readmission and mortality risk: An electronic health record study. PLoS One. 2018;13(9):e0203864. doi: 10.1371/journal.pone.0136341.
Sittig DF, Singh H. Legal, ethical, and financial dilemmas in electronic health record adoption and use. Pediatrics. 2011;127(4):e1042-e1047. doi: 10.1542/peds.2010-2184.
Nair M, Svedberg P, Larsson I, Nygren JM. A comprehensive overview of barriers and strategies for AI implementation in healthcare: mixed-method design. PLoS One. 2024;19(8):e0305949. doi: 10.1371/journal.pone.0305949.
Zhou N, Zhang CT, Lv HY, Hao CX, Li TJ, Zhu JJ, et al. Concordance study between IBM Watson for Oncology and clinical practice for patients with cancer in China. Oncologist. 2019;24(6):812–9. doi: 10.1634/theoncologist.2018-0255.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10. doi: 10.1001/jama.2016.17216.
Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37(9):1038–40. doi: 10.1038/s41587-019-0224-x.
Oh J, Son S, Kwon D, Kim M, Park Y, Park Y. Design of secure and privacy-preserving data sharing scheme based on key aggregation and private set intersection in medical information system. Mathematics. 2024;12(11):1717. doi: 10.3390/math12111717.
Duggento A, Conti A, Mauriello A, Guerrisi M, Toschi N. Deep computational pathology in breast cancer. Semin Cancer Biol. 2021;72:226–237. doi: 10.1016/j.semcancer.2020.08.006.
Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2017;7(6):e1212. doi: 10.1002/widm.1312.
Obermeyer Z, Emanuel EJ. Predicting the future: big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–19. doi: 10.1056/NEJMp1606181.
Ardic N, Dinc R. The next frontiers in preventive and personalized healthcare: artificial intelligent-powered solutions. J Prev Med Public Health. 2025;18(1):15–20. doi: 10.3961/jpmph.25.080.
Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol. 2017;69(21):2657-2664. doi: 10.1016/j.jacc.2017.03.571.
Islam SMR, Kwak D, Kabir MH, Hossain M, Kwak KS. The internet of things for health care: a comprehensive survey. IEEE Access. 2015;3:678–708. doi: 10.1109/ACCESS.2015.2437951.
Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-1246. doi: 10.1093/bib/bbx044.
Hughes A, Shandhi MMH, Master H, Dunn J, Brittain E. Wearable devices in cardiovascular medicine. Circ Res. 2023;132(5):652-70. doi: 10.1161/CIRCRESAHA.122.322389.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
