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ABSTRACT

Background: Onion peel extracts contain quercetin de-

rivatives, fl avonoids that have been shown to signifi cantly 

improve diabetic status and to exhibit antioxidant proper-

ties in animal models. Vitamin E is an important antioxi-

dant that is present within the cell membrane and acts as 

a lipid-soluble scavenger. Th is study aimed to compare the 

effi  cacy of an onion peel extract and vitamin E to alleviate 

the altered redox balance of diabetic rats.

Methods: Streptozotocin-induced diabetic male Wistar 

rats (n = 34) were randomly divided into three treatment 

groups. For 45 days, the fi rst group was fed a normal diet 

(diabetic control group), the second group was fed a normal 

diet plus 20 mg/kg body weight vitamin E and the third group 

was fed a normal diet plus 1% OPE .

Results: Th e formation of malondialdehyde and protein 

carbonyls was signifi cantly suppressed and the activity of su-

peroxide dismutase was increased in diff erent areas of the 

brain upon onion peel extract administration (P  < 0.001) 

compared to the diabetic control group. Furthermore, vi-

tamin E did not signifi cantly decrease the level of oxidative 

stress or the blood glucose concentration in these rats.

Conclusion: OPE is better able to ameliorate oxida-

tive stress and hyperglycaemia than vitamin E in a dia-

betic rat model.

Keywords: Diabetes mellitus, Streptozotocin, Onion peel 

extract, Vitamin E, Oxidative stress.

SAŽETAK

Uvod: Ekstrakt kore crnog luka sadrži derivate kvercet-

ina, najznačajnijeg fl avonoida, koji poboljšavaju dijabetički 

status i imaju antioksidativna svojstva na animalnim mod-

elima. Vitamin E je važan liposolubilni antioksidant koji je 

prisutan u ćelijskim membranama, koji može da bude lipo-

solubilni skevendžer. Cilj ove studije je da uporedi efi kasnost 

regulisanja poremećene redoks ravnoteže ekstraktom kore 

crnog luka i vitamonom E kod pacova sa dijabetesom.

Metode: Mužjaci Wister pacova sa streptozotocin-inuko-

vanim dijabetesom (n = 34) su randomizacijom podeljeni u tri 

grupe. Jedna grupa je bila na normalnoj ishrani (dijabetična 

kontrolna grupa), druga grupa je dobijala vitamin E u dozi od 

20 mg/kg telesne mase tokom 45 dana, i treća grupa je dobijala 

1% ekstrakt kore crnog luka tokom istog vremenskog perioda.

Rezultati: Malondialdehid i proizvodi stvaranja kar-

bonilnih proteina su bili značanjno smanjeni, a aktivnost 

superoksid dizmutaze je bila značajno povišena u različitim 

delovima mozga usled primene ektrakta kore crnog luka (P 

< 0.001) u odnosu na dijabitičnu kontrolnu grupu, dok pri-

mena vitamina E nije dovela do značajnog smanjenja oksi-

dativnog stresa ni koncentracije glukoze u krvi.

 Zaključak: Regulacija oksidativnog stresa, kao i hipog-

likemijski uticaj ekstrakta kore crnog luka, je bila mnogo više 

izražena u odnosu na vitamin E u dijabetičnom eksperimen-

talnom modelu pacova. 

Ključne reči: diabetes mellitus, streptozotocin, ekstrakt 

crnog luka, vitamin E, oxidativni stres
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INTRODUCTION

Diabetes is characterised by hyperglycaemia and meta-

bolic abnormalities due to decreased insulin levels or ac-

tivity, which cause metabolic and physiological changes in 

various organs, including the brain [1]. In diabetes mellitus, 

60-70% of deaths are due to diabetic neuropathy. Diabetic 

neuropathy is a complication of long-term diabetes that is 

mainly caused by hyperglycaemia. This complication pro-

duces oxidative stress in the central nervous system, which 

causes an imbalance in the oxidative status of the nervous 

tissue and leads to microvascular cerebral diseases [2,3] .

The brain was previously considered to be an insulin-

insensitive tissue. However, recent molecular studies have 

indicated that insulin is present in several regions of the 

central nervous system, where it acts as a neuromodulator, 

inhibiting food intake and stimulating fat oxidation [4]. Ce-

rebral glucose is increased after the onset of diabetes in rats 

[5]. This increase in the intracellular glucose load leads to 

the autoxidation of glucose, the generation of free radicals, 

enhanced lipid peroxidation and non-enzymatic protein 

glycation,  and increased activation of the polyol pathway. 

The central nervous system is highly susceptible to oxida-

tive stress. The vulnerability of the brain to oxidative stress 

induced by oxygen free radicals  seems to be because the 

brain utilises about one-fifth of the total oxygen demand of 

the body for oxidative phosphorylation to acquire energy 

and that as it has a relatively small antioxidant capacity [6], 

the brain cannot neutralise the toxic effects of free radicals. 

Furthermore, the brain contains a high concentration of eas-

ily peroxidisable fatty acids [7], and it is known that certain 

regions of the brain are highly enriched in iron, a metal that 

is catalytically involved in the production of damaging oxy-

gen free radical species when it is in free form [3,8]. ROS 

overload damages many cellular components, including 

proteins, DNA and membrane phospholipids [9-15]. Lipid 

peroxidation is the consequence of ROS, the role of which 

is well established in the pathogenesis of a wide range of 

diseases, such as Alzheimer’s disease and Parkinson’s dis-

ease [16-18], acute brain injuries, such as ischemia and head 

trauma [19-21], and some major metabolic diseases, such as 

diabetes mellitus (DM) [22]. Lipid peroxidation and the sec-

ondary and end products of non-enzymatic (autoxidative) 

fatty peroxide formation and decomposition can produce 

a large variety of aldehydes, including hexanal, malondial-

dehyde (MDA) and 5-hydroxynonenal [15].  Conceptually, 

these three facts  indicate that MDA is an excellent index 

of lipid peroxidation. Protein carbonyls (PCs) are generated 

from oxidatively modified cellular proteins through a variety 

of mechanisms, including the direct oxidation of amino acid 

side chains and oxidation-induced peptide cleavage. 

There are several proposed methods to increase insu-

lin sensitivity and to combat against oxidative stress. Early 

diagnosis and prompt initiation of therapy are the main 

factors in reducing the population burden of diabetes. Al-

though changes in lifestyle (weight loss, exercise, restrict-

ed diet, etc.) is always recommended to fight diabetes, the 

compliance rate is not at all satisfactory. In addition, sev-

eral medicines are available to treat this disorder, but the 

aggressive use of medicine is restricted due to unwanted 

side effects. Therefore, the recent research trend involves 

the identification of a treatment with minimal side effects 

and maximum disease prevention. Currently, the main fo-

cus of research is on herbal remedies [23]. Many studies 

have indicated that diabetes can be delayed or prevented 

with dietary flavonoids. Flavonoids are naturally found in 

plant foods, and the flavonoid quercetin is one of the most 

common flavonoids present in foods. Some recent stud-

ies have suggested that quercetin improves diabetic status 

by either decreasing oxidative stress [24-26] or correcting 

altered hepatic gene expression [27]. 

Onion bulbs are the richest source of dietary flavonoids. 

At least 25 different flavonoids have been identified in on-

ion bulbs, and quercetin and its glycosides are the most 

important ones  [28]. Quercetin is present at a high con-

centration in the outer dry layers of the onion bulb [29]. 

These layers show strong antioxidant activity, and it has 

been proposed that quercetin is the main factor for this 

activity [30]. 

Vitamin E is a lipid-soluble vitamin with chain-break-

ing antioxidant activity. The major function of vitamin E is 

its role as a physiological membrane-bound antioxidant, 

protecting all cell membrane lipids from oxidative damage 

induced by reactive oxygen species [31]. 

Thus, the present study was conducted to investigate 

the potency of onion peel extract (OPE) and vitamin E 

to ameliorate oxidative stress in streptozotocin (STZ)-in-

duced diabetes in a rat model. Accordingly, we conducted 

this study using an experimental rat model, assuming that 

the results would have similar implications in humans.

MATERIAL AND METHODS

Study location

The present study was an animal model-based case-

control study that was undertaken in the department of 

Biochemistry with the collaboration of the department 

of Pharmacology at Burdwan Medical College (Burdwan, 

West Bengal, India).

Animals 

Male Wistar albino rats (Rattus norvegicus albinus), 

between 1 to 2 months of age and weighing 150 ± 12 g (n = 

34), were obtained from the appropriately maintained in-

stitutional animal house. The rats had free access to drink-

ing water and rat food pellets. The light source in the ani-

mal room was regulated with a 12:12 hr light-dark cycle, 

a temperature of 22 ± 2°C and 45-50% relative humidity. 

All rats were acclimatised for at least 7 days before the in-

duction of diabetes. All procedures involving animals were 

performed in accordance with the ‘Guide for the Care and 
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Use of Laboratory Animals (1985)’ by the NIH (Bethesda, 

MD, USA) and the ‘Guidelines for Care and Use of Ani-

mals in Scientific Research’ by the Indian National Science 

Academy (INSA; New Delhi, India). The study was ap-

proved by the institutional ethics committee for the care 

and use of laboratory animals and started after obtaining 

written consent [Memo No. BMC/2179/1 (3)].

Preparation of OPE

The outer dry layers of onion bulbs (Allium cepa L.) 

were extracted with 60% ethanol adjusted to pH 5.5 at 50°C 

for 3 hours. The extract was concentrated and then freeze 

dried. The amount of total polyphenol and quercetin were 

616.08 ± 13.82 mg/g and 104.52 ± 7.81 mg/g as determined 

by the methods of Folin-Ciocalteu [32] and Hertog et al. 

[33], respectively.

Study design 

STZ was dissolved in saline sodium citrate buffer (50 

mM sodium citrate, 0.9% NaCl, pH 4.5) . Diabetes was 

induced in male neonatal Wistar rats at birth by a single 

intravenous injection of freshly prepared STZ at a dose of 

100 mg/kg body weight. Forty-two days after STZ admin-

istration, the plasma glucose level of each rat was deter-

mined to confirm the induction of diabetes171. Rats with 

fasting plasma glucose levels that were greater than 16.65 

mmol/L were considered to be diabetic and used for fur-

ther studies. 

Then, the rats with fasting blood glucose levels above 

300 mg/dl were randomly divided into 3 groups and treated 

for 45 days. The first group was fed a normal diet only (dia-

betic control group), the second group was fed a normal 

diet containing 20 mg/kg vitamin E and the third group 

was fed a normal diet containing 1% OPE.  At the end of 

the treatment period, all the rats were sacrificed by cervical 

dislocation.

Tissue sample preparation

Preparation of brain extracts

To determine the ability of OPE and vitamin E to reduce 

oxidative stress in different areas of the brain, rat brains 

were dissected and segregated in the following order: cor-

tex, cerebellum, midbrain and basal ganglia. The brain tis-

sues were washed gently in saline to remove any blood and 

then immediately frozen, first at -20 °C  and then at -70 °C, 

and kept under these conditions (-70 °C) until the chemi-

cal analysis was performed. All assays were completed on 

the same day of sample collection. For homogenisation, 

the samples were washed and then minced with a sharp 

surgical blade in small volumes of ice-cold (not frozen) 

homogenisation buffer [0.1 M Tris-HCl (pH 7.35) and 100 

μM ethylenediaminetetraacetic acid (EDTA)]. Immedi-

ately, the samples were homogenised in 10 volumes of the 

ice-cold buffer solution in a motor-driven glass tissue ho-

mogeniser in presence of a few properly washed particles 

of sand. During the whole homogenisation procedure, the 

homogeniser was kept on ice to dissipate any heat. There-

after, the samples were centrifuged at 10,000 × g for 10 min 

at 4°C. The supernatants from the homogenates were col-

lected and were immediately analysed for MDA content, 

PC product content, cytosolic superoxide dismutase (Cu2+-

Zn2+-SOD) activity and tissue protein concentration.

Collection and processing of blood

Blood was withdrawn from tail of each rat to determine 

the blood glucose level. Some of the blood was separated 

into a heparinised vial to obtain plasma.

Biochemical assays

Blood was separated into a heparinised vial to obtain 

plasma and a plain vial to obtain serum . Plasma glucose was 

assayed photometrically using the glucose oxidase peroxidase 

(GOD-POD) method [35]. MDA, a marker of lipid peroxida-

tion due to oxidative stress, was measured via its reaction with 

thiobarbituric acid at 532 nm [36]. The brain tissue levels of 

MDA were calculated using a calibration curve that was de-

rived using 1,1,3,3- tetraethoxypropane (Fluka, Germany) as 

an external calibration standard. The calibration curve was 

linear from 1.25-2.5 nmol/ml (r2=0.997). Oxidation-induced 

changes in the tissue proteins were estimated by measuring 

the protein carbonyl product content. The method used is 

based on the reaction of carbonyl groups with 2,4-dinitro-

phenylhydrazine to form a 2,4-dinitrophenylhydrazone-re-

active carbonyl derivative that can be measured at 370 nm. 

[37]. The cytosolic superoxide dismutase (SOD) activity was 

estimated using the method of Kakkar et al. [38], where one 

unit of SOD was defined as the amount of enzyme that in-

hibits the rate of electron transfer from NADH to nitroblue 

tetrazolium (NBT) by 50 %  under specified conditions. The 

protein concentration was measured using the method of 

Lowry et al. [39], in which the proteins in the tissue homoge-

nates react with alkaline copper sulphate, followed by Folin’s 

phenol reagent (SRL, India). The absorbance values of the 

samples were then compared to a standard curve that was 

prepared using known concentrations of bovine serum al-

bumin (Merck, Germany). All photometric measurements 

were performed with a dual-beam spectrophotometer (UV 

5704SS). The blood glucose levels are expressed in units of 

mmol/L, while the other parameters are expressed in their 

corresponding units per mg of tissue protein.

Statistical analysis

The mean values were analysed for significant differ-

ences between the diabetic control group (I) and the treat-

ment groups (II and III) using independent t-tests. For all 

tests, the p-value was considered to be significant if it was 

less than 0.05 at a confidence level of 95 %. All statistical 

analyses were performed with the SPSS statistical software 

package (version 11.5 for Windows).
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RESULTS 

To compare the efficiencies of OPE and vitamin E in re-

ducing oxidative stress, an independent sample t-test was 

performed between the Group I rats and the Group II rats 

as well as between the Group I rats and the Group III rats 

(Table 1). The MDA and PC product contents were found 

to be significantly suppressed and SOD activity was im-

proved in different areas of the brain upon OPE adminis-

tration (P < 0.001, Figure  2). In addition, the Group III rats 

showed a lower mean plasma glucose level (8.98 (range 7.3 

to 10.66) mmol/L)  than the diabetic control group (22.5 

± 3.49 (range 18.97 to 26.02) mmol/L). Diet supplemen-

tation with vitamin E failed to significantly decrease both 

the level of oxidative stress and the blood glucose concen-

tration (Figure 2). In fact, there was significant decrease 

in the oxidative parameters of the OPE-treated group (III) 

compared to the vitamin E-treated group (II).

Parameters Parameters Group I

(STZ)

n = 12

Group II

(STZ + vit E)

n = 10

Group III

(STZ + OPE)

n = 12

Group I 

vs.

Group II

Group I 

vs.

Group III

Group II         

vs.

Group III

Blood 

glucose 

(mmol/L)

Plasma 22.5 ± 3.49 22.89 ± 0.48 8.98 ± 1.68 p> 0.05 p<0.001 p<0.001

Tissue MDA 

(nmol/mg 

protein)

Cortex 0.95 ± 0.06 0.89 ± 0.08 0.53 ± 0.04 p> 0.05 p<0.001 p<0.001

Cerebellum 0.67 ± 0.06 0.64 ± 0.06 0.35 ± 0.06 p> 0.05 p<0.001 p<0.001

Midbrain 0.79 ± 0.01 0.76 ± 0.04 0.33 ± 0.05 p> 0.05 p<0.001 p<0.001

Basal ganglia 1.39 ± 0.28 1.27 ± 0.25 0.47 ± 0.04 p> 0.05 p<0.001 p<0.001

Tissue PC 

(mM/mg 

protein)

Cortex 0.31 ± 0.02 0.29 ± 0.02 0.18 ± 0.02 p> 0.05 p<0.001 p<0.001

Cerebellum 0.26 ± 0.04 0.23 ± 0.03 0.11± 0.02 p> 0.05 p<0.001 p<0.001

Midbrain 0.28 ± 0.02 0.26 ± 0.02 0.14 ± 0.03 p> 0.05 p<0.001 p<0.001

Basal ganglia 0.56 ± 0.10 0.49± 0.11 0.25 ± 0.04 p> 0.05 p<0.001 p<0.001

Cytosolic 

SOD

(IU/mg 

protein)

Cortex 0.66 ± 0.05 0.75± 0.05 1.31 ± 0.04 p = 0.032 p<0.001 p> 0.05

Cerebellum 0.59 ± 0.05 0.71 ± 0.11 0.97 ± 0.11 p = 0.026 p<0.001 p> 0.05

Midbrain 0.44 ± 0.02 0.52 ± 0.23 0.88 ± 0.15 p = 0.017 p<0.001 p> 0.05

Basal ganglia 0.79 ± 0.12 0.98 ± 0.17 1.29 ± 0.20 p>0.05 p<0.001 p> 0.05

Table 1. Diff erences between the mean values of the studied parameters in the rats

of the three treatment groups.

Figure 1. Study design.

Values are means ± SD; p < 0.05 was considered to be

statistically signifi cant.
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Figure 2. Histogram showing the distribution of MDA content, PC product content and SOD activity in the (a) cortex, (b) cerebellum, (c) mid-brain, 

and (d) basal ganglia of Group I (STZ), Group II (STZ + vit E) and Group III (STZ + OPE) rats. Asterisks indicate p<0.001.
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CONCLUSION

The present study demonstrated that OPE ameliorates 

oxidative stress and hyperglycaemia in diabetic rats bet-

ter than vitamin E. Further studies should be performed 

to evaluate the use of onion peel extracts in the prevention 

and early treatment of type 2 diabetes.
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