FERROPTOSIS AND ITS CLINICAL SIGNIFICANCE

  • Danijela Agić
  • Marijana Vranješ Faculty of Medicine, University of Novi Sad, Clinical Center of Vojvodina, Clinic for hematology
  • Marina Dragičević Jojkić
  • Amir El Farra Faculty of Medicine, University of Novi Sad, Clinical Center of Vojvodina, Clinic for hematology
  • Ivana Urošević Faculty of Medicine, University of Novi Sad, Clinical Center of Vojvodina, Clinic for hematology
Keywords: iron, lymphoma, therapeutic agent, cell death

Abstract


Introduction: Ferroptosis, mentioned as such for the first time in 2012 by Dixon et al., is an iron-dependent type of cell death that occurs in the presence of lipid peroxides. The mechanism of the process and the signaling pathways involved in it differ from the previously known apoptosis, necrosis, and autophagy. An inflammatory reaction also occurs, which further distinguishes this type of cell death from apoptosis. Ferrostatin inhibits this process.

Methods: A review of the literature obtained by searching the Medline database was performed, with a special focus on studies concerned with the importance of ferroptosis in clinical medicine, primarily hematology.

Results: Iron metabolism in malignant and healthy cells differs. Malignant cells tolerate oxidative stress well and avoid ferroptosis. According to literature data, various tested agents stimulate ferroptosis and thus become possible therapeutic agents. Some genes linked to iron metabolism have shown prognostic significance in patients with diffuse large B-cell lymphoma.

Conclusion: The discovery of new mechanisms of cell death and the signaling pathways involved in this process leads to potentially new target therapy. Although promising, these results require validation through further research.

References

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012 May 25;149(5):1060-72. doi: 10.1016/j.cell.2012.03.042.

Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003 Mar;3(3):285-96. doi: 10.1016/s1535-6108(03)00050-3.

Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Friedman DJ, et all. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8.

Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008 Mar;15(3):234-45. doi: 10.1016/j.chembiol.2008.02.010.

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020 Feb 3;11(2):88. doi: 10.1038/s41419-020-2298-2.

Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell. 2015 Jul 16;59(2):298-308. doi:10.1016/j.molcel.2015.06.011.

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014 Dec;16(12):1180-91. doi: 10.1038/ncb3064.

Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16836-41. doi: 10.1073/pnas.1415518111.

Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012 Mar;1820(3):291-317. doi: 10.1016/j.bbagen.2011.07.016.

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017 Oct 5;171(2):273-285. doi: 10.1016/j.cell.2017.09.021.

Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015 Nov 5;34(45):5617-25. doi: 10.1038/onc.2015.32.

Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends Biochem Sci. 2016 Mar;41(3):274-286. doi: 10.1016/j.tibs.2015.11.012.

Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Aspects Med. 2013 Apr-Jun;34(2-3):612-9. doi: 10.1016/j.mam.2012.05.011.

Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals. 2012 Aug;25(4):643-55. doi: 10.1007/s10534-012-9526-x.

Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13612-7. doi: 10.1073/pnas.0606424103.

Pinilla-Tenas JJ, Sparkman BK, Shawki A, Illing AC, Mitchell CJ, Zhao N, et al. Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol. 2011 Oct;301(4):C862-71. doi: 10.1152/ajpcell.00479.2010.

Shi H, Bencze KZ, Stemmler TL, Philpott CC. A cytosolic iron chaperone that delivers iron to ferritin. Science. 2008 May 30;320(5880):1207-10. doi: 10.1126/science.1157643.

Leidgens S, Bullough KZ, Shi H, Li F, Shakoury-Elizeh M, Yabe T, et al. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J Biol Chem. 2013 Jun 14;288(24):17791-802. doi: 10.1074/jbc.M113.460253.

Kidane TZ, Sauble E, Linder MC. Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol. 2006 Sep;291(3):C445-55. doi: 10.1152/ajpcell.00505.2005.

Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima N, Iwai K. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol. 2011 May;31(10):2040-52. doi: 10.1128/MCB.01437-10.

Kishi-Itakura C, Koyama-Honda I, Itakura E, Mizushima N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J Cell Sci. 2014 Sep 15;127(Pt 18):4089-102. doi: 10.1242/jcs.156034.

Zhang Y, Mikhael M, Xu D, Li Y, Soe-Lin S, Ning B, et al. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid Redox Signal. 2010 Oct 1;13(7):999-1009. doi: 10.1089/ars.2010.3129.

Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014 Nov;16(11):1069-79. doi: 10.1038/ncb3053.

Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014 May 1;509(7498):105-9. doi: 10.1038/nature13148. Epub 2014 Mar 30.

Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic Biol Med. 2017 Jul;108:610-626. doi: 10.1016/j.freeradbiomed.2017.04.024.

Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol. 2010 Mar;73(3):461-9. doi: 10.1016/j.ejrad.2009.12.022.

Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014 May 20;3:e02523. doi: 10.7554/eLife.02523.

Cramer SL, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017 Jan;23(1):120-127. doi: 10.1038/nm.4232.

Liu DS, Duong CP, Haupt S, Montgomery KG, House CM, Azar WJ, et al. Inhibiting the system xC-/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun. 2017 Mar 28;8:14844. doi: 10.1038/ncomms14844.

Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999 Apr 23;274(17):11455-8. doi: 10.1074/jbc.274.17.11455.

Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond. Amino Acids. 2012 Jan;42(1):231-46. doi: 10.1007/s00726-011-0867-5.

Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013 Feb 10;18(5):522-55. doi: 10.1089/ars.2011.4391.

Xia X, Fan X, Zhao M, Zhu P. The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach. Curr Gene Ther. 2019;19(2):117-124. doi: 10.2174/1566523219666190628152137.

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014 Jan 16;156(1-2):317-331. doi: 10.1016/j.cell.2013.12.010.

Haß C, Belz K, Schoeneberger H, Fulda S. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis. Biochem Pharmacol. 2016 Apr 1;105:14-22. doi: 10.1016/j.bcp.2016.01.004.

Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2015 May 26;2(4):e1054549. doi: 10.1080/23723556.2015.1054549.

Yu X, Wang Y, Tan J, Li Y, Yang P, Liu X, et al. Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 2024 Jan 18;10(1):35. doi: 10.1038/s41420-024-01800-2.

Gout PW, Simms CR, Robertson MC. In vitro studies on the lymphoma growth-inhibitory activity of sulfasalazine. Anticancer Drugs. 2003 Jan;14(1):21-9. doi: 10.1097/00001813-200301000-00004.

Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015 Oct 15;22(11):1045-54. doi: 10.1016/j.phymed.2015.08.002.

Salles G. Treating diffuse large B-cel1 lymphoma: optimizing the use of anti-CD20 antibodies. Hematology education: the education program for the annual congress. Copenhagen: European Hematology Association: 2008:2:339-46.

Uzurov Dinić V, Savić A, Lazarević T, Čemerikić Martinović V, Agić D, Popović S. Prognostički činioci kod obolelih od difuznog krupnoćelijskog B-limfoma. Medicinski pregled. 2009;62(3-4):171-6. doi: 10.2298/MPNS0904171U.

Zhou Z, Sehn LH, Rademaker AW, Gordon LI, Lacasce AS, Crosby-Thompson A, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood. 2014 Feb 6;123(6):837-42. doi: 10.1182/blood-2013-09-524108.

Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022 Jul;36(7):1720-1748. doi: 10.1038/s41375-022-01620-2.

Agić D., Lakić T., Nikin Z. Grey zone lymphoma - diagnostic and therapeutic challenge. Medicinski pregled. 2022; Vol. 75 (Suppl. 1): 101-5. doi:10.2298/MPNS22S1101A.

Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013 May;13(5):342-55. doi: 10.1038/nrc3495.

Agić D, Čabarkapa V, Popović S, Perčić I, El Farra A, Nikolić S, et al. Growth/differentiation factor-15, hepcidin and iron metabolism biomarkers in lymphoproliferative diseases. EHA Library. Agić D. 05/16/2019; 267992; PB2046.

Devin J, Cañeque T, Lin YL, Mondoulet L, Veyrune JL, Abouladze M, et al. Targeting Cellular Iron Homeostasis with Ironomycin in Diffuse Large B-cell Lymphoma. Cancer Res. 2022 Mar 15;82(6):998-1012. doi: 10.1158/0008-5472.CAN-21-0218.

Schmitt A, Xu W, Bucher P, Grimm M, Konantz M, Horn H, et al. Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL. Blood. 2021 Sep 9;138(10):871-884. doi: 10.1182/blood.2020009404.

Cai Y, Lv L, Lu T, Ding M, Yu Z, Chen X, et al. α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis. Cell Death Discov. 2023 Jun 12;9(1):182. doi: 10.1038/s41420-023-01475-1.

Published
2024/10/02
Section
Reviews