O značaju higijenskih mera u suzbijanju infektivnih bolesti koje se prenose respiratornim putem
Sažetak
Zarazne bolesti su postojale u obliku epidemija tokom istorije čovečanstva, a patogeni mikroorganizmi su dugo bili smatrani odgovornim za njihovo pojavljivanje. Međutim, takozvani biološki agensi akutnih zaraznih bolesti nisu njihovi stvarni uzroci, već samo katalizatori već postojećih patoloških procesa. Otuda ekstremna varijabilnost lokacije i intenziteta patoloških procesa sa istim biološkim uzročnikom kod različitih jedinki vrste domaćina. Patogenost i virulencija mikroorganizama nisu njihova vlastita i nepromenljiva svojstva, već su samo rezultat patogenosti neživih faktora životne sredine koji deluju na domaćina i koji obično ostaju van fokusa medicinskih istraživanja. Pitanje od glavne praktične važnosti, kako da sprečimo pojavu zaraznih bolesti, daje nam istorija. U prošlosti su mnoge higijenske mere bile dovoljne da se većina zaraznih bolesti svede na neznatnu pojavu. Do sada je društvo puno uradilo na higijenskim standardima čvrstih i tečnih materija u našem okruženju. Međutim, briga o higijeni atmosfere i dalje je prilično nerazvijena i zanemarena. Danas se atmosfera neprekidno i sistematski zagađuje određenim gasovima, parama kao i česticama. Direktni rezultat ovakog stanja razvoja higijenske prakse je da su danas jedina vrsta epidemija koje pogađaju opštu populaciju epidemije koje se šire atmosferom, tj. respiratorne epidemije. Da bi se trajno eliminisala dalja mogućnost respiratornih epidemija, neophodno je uvesti trajne i sistematske mere za održavanje higijene atmosfere ljudskih naselja.
Reference
Microbiome definition re-visited: old concepts and new challenges. Microbiome
2020; 8: 103.
2. Peterson JW. Bacterial Pathogenesis. In: Baron S. editor. Medical Microbiology. 4th
ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter
7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8526/
3. Burchacka E, Witkowska D. The role of serine proteases in the pathogenesis of
bacterial infections. Postepy Hig Med Dosw (Online) 2016;70:678-94.
4. Tapader R, Basu S, Pal A. Secreted proteases: A new insight in the pathogenesis of
extraintestinal pathogenic Escherichia coli. Int J Med Microbiol.2019;309:159-68.
5. Sharma A, Gupta SP. Fundamentals of Viruses and Their Proteases. Viral Proteases
and Their Inhibitors 2017: 1–24.
6. Catalyst. In: IUPAC. Compendium of Chemical Terminology, 2nd ed. Oxford.
Blackwell Scientific Publications, Oxford 1997. Online version (2019-) created by S. J.
Chalk.
7. Aujoulat F, Roger F , Bourdier A, Lotthé A, Lamy B, Marchandin H, Jumas- Bilak E.
From Environment to Man: Genome Evolution and Adaptation of Human
Opportunistic Bacterial Pathogens. Genes (Basel) 2012; 3: 191–232.
8. Experiments on Plague Eradication in India. Nature 1921; 108: 587–8.
https://doi.org/10.1038/108587b0
9. Metcalfe C. "The Ghost Map. Steven Johnson". Int J Epidemiol 2007; 36: 935–6.
10. Hunter W. The Serbian Epidemics of Typhus and Relapsing Fever in 1915: Their
Origin, Course and Preventive Measures employed for their Arrest. Proc R Soc Med.
1920; 13(Sect Epidemiol State Med): 29–158.
11. Independent Particulate Matter Review Panel. The Need for a Tighter ParticulateMatter Air-Quality Standard. N Engl J Med 2020; 383:680-3.
12. Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Santo Signorelli S, et al. The role
of air pollution (PM and NO 2) in COVID-19 spread and lethality: A systematic
review. Environ Res 2020;191:110129.
13. Paital B, Kumar Agrawal P. Air pollution by NO 2 and PM 2.5 explains COVID-19
infection severity by overexpression of angiotensin-converting enzyme 2 in
respiratory cells: a review. Environ Chem Lett. 2020;1-18.
14. Magazzino C, Mele M, Schneider N. The relationship between air pollution and
COVID-19-related deaths: An application to three French cities. Appl Energy
2020;279:115835.
15. Kim JH, Kim J, Kim WJ, Choi YH, Yang SR, Hong SH. Diesel Particulate Matter 2.5
Induces Epithelial-to-Mesenchymal Transition and Upregulation of SARS- CoV-2
Receptor during Human Pluripotent Stem Cell-Derived Alveolar Organoid
Development. Int J Environ Res Public Health 2020;17:8410.
16. Ottinger SE, Mayura K, Lemke SL, McKenzie KS, Wang N, Kubena LF, et al. Utilization
of electrochemically generated ozone in the degradation and detoxication of
benzo[a]pyrene. J Toxicol Environ Health A. 1999;57:565-83.
17. Ma M, Li J, Wang Z. Assessing the detoxication efficiencies of wastewater treatment
processes using a battery of bioassays/biomarkers. Arch Environ Contam Toxicol
2005;49:480-7.
18. Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier
discharges. Journal of Physics D: Applied Physics 1987;20:1421-37.
19. Dohan JM, Masschelein WJ. The Photochemical Generation of Ozone: Present State–
of–the–Art. Ozone: Science & Engineering 1987; 9:315-34.