RACIONALNA UPOTREBA ANTIBIOTIKA TOKOM PANDEMIJE KOVID-19 INFEKCIJE
Antibiotici u Kovidu
Sažetak
Uvod/Cilj: Globalna pandemija izazvana SARS-KoV-2 virusom se odavno smatra vanrednom situacijom, gde broj slučajeva eksponencijalno raste, uprkos stalnim naporima da se infekcija suzbije. Iako je bolest KOVID-19 izazvana SARS-KoV-2 virusom, većini pacijenata se ordinira antibiotska terapija. Zabrinjavajuće je kakvi
će biti dugoročni efekti ovakvo široke primene antibiotika na antimikrobnu rezistenciju. Cilj ovog rada je da se, na osnovu dostupne literature: utvrdi kakav je uticaj pandemije KOVID-19 oboljenja na upotrebu antibiotika u cilju lečenja; utvrdi kakva je globalna situacija rezistencije na antibiotike; identifikuju ključne
oblasti u kojima bi bile potrebne hitne promene.
Metode: Sproveden je sistematski pregled aktuelne literature o upotrebi antibiotika u lečenju KOVID-19 infekcije kod pacijenata. Pretražene su publikacije u bazama podataka PubMed i MEDLINE, objavljene od marta 2020. do septembra 2021. godine.
Rezultati: Antibiotici su prepisivani kod između 76,8% i 87,8% pacijenata lečenih od KOVID-19 oboljenja. Antibiotici su se u manjoj meri prepisivali deci u odnosu na odrasle (38,5%, u odnosu na 83,4%). Najčešće ordinirani antibiotici su bili fluorohinoloni (20%), makrolidi (18,9%), β-laktamski antibiotici (15,0%), i cefalosporini (15,0%). Samostalno uzimanje antibiotika je identifikovano kao jedan od bitnih faktora koji doprinose antimikrobnoj rezistenciji tokom KOVID-19 pandemije.
Zaključak: Uticaj pandemije KOVID-19 oboljenja na globalnu antimikrobnu rezistenciju je još uvek nepoznat i verovatno će biti neravnomerno raspoređen u opštoj populaciji. Iako su kod pacijenata sa KOVID-19 oboljenjem korišćeni različiti antibiotici, njihova uloga i potreba za njihovom primenom u lečenju ove infekcije
se još utvrđuje. Za sada nema pouzdanih podataka da primena antibiotika, u slučajevima KOVID-19 infekcija koje nisu udružene sa bakterijskim infekcijama, ima efekat na tok bolesti i mortalitet.
Reference
2. Ioannidis JPA. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull World Health Organ. 2021;99(1):19-33F. doi:10.2471/BLT.20.265892
3. Giri M, Puri A, Wang T, Guo S. Comparison of clinical manifestations, pre-existing comorbidities, complications and treatment modalities in severe and non-severe COVID-19 patients: A systemic review and meta-analysis. Sci Prog. 2021; 104(1): 368504211000906. doi:10.1177/00368504211000906
4. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057-98. doi: 10.1016/S1473-3099(13)70318-9. Erratum in: Lancet Infect Dis. 2014;14(3):182.
5. Bendala Estrada AD, Calderón Parra J, Fernández Carracedo E, Muiño Míguez A, Ramos Martínez A, Muñez Rubio E, et al. Inadequate use of antibiotics in the covid-19 era: effectiveness of antibiotic therapy. BMC Infect Dis. 2021;21(1):1144. doi: 10.1186/s12879-021-06821-1
6. Langford BJ, So M, Raybardhan S, Leung V, Soucy JR, Westwood D, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520-531. doi:10.1016/j.cmi.2020.12.018
7. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi: 10.1001/jama.2020.1585. Erratum in: JAMA. 2021;325(11):1113
8. Damle B, Vourvahis M, Wang E, Leaney J, Corrigan B. Clinical Pharmacology Perspectives on the Antiviral Activity of Azithromycin and Use in COVID-19. Clin Pharmacol Ther. 2020;108(2):201-211. doi: 10.1002/cpt.1857. PMID: 32302411
9. Vitiello A, Ferrara F. A short focus, azithromycin in the treatment of respiratory viral infection COVID-19: efficacy or inefficacy? Immunol Res. 2021;1-5. doi:10.1007/s12026-021-09244-x
10. Popp M, Stegemann M, Riemer M, Metzendorf M, Romero CS, Mikolajewska A, et al. Antibiotics for the treatment of COVID‐19. Cochrane Database of Systematic Reviews 2021; 10:CD015025. doi: 10.1002/14651858.CD015025
11. RECOVERY Collaborative Group. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10274):605-612. doi: 10.1016/S0140-6736(21)00149-5
12. PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021;397(10279):1063-1074. doi: 10.1016/S0140-6736(21)00461-X
13. Yin X, Xu X, Li H, Jiang N, Wang J, Lu Z, et al. Evaluation of early antibiotic use in non-severe COVID-19 patients without bacterial infection: Early antibiotic use in non-severe COVID-19. Int J Antimicrob Agents. 2021; 106462. doi:10.1016/j.ijantimicag.2021.106462
14. Gerver SM, Guy R, Wilson K, Thelwall S, Nsonwu O, Rooney G, et al. National surveillance of bacterial and fungal coinfection and secondary infection in COVID-19 patients in England: lessons from the first wave. Clin Microbiol Infect. 2021;27(11):1658-1665. doi:10.1016/j.cmi.2021.05.040)
15. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020;81(2):266–275 doi: 10.1016/j.jinf.2020.05.046
16. Chong WH, Saha BK, Ananthakrishnan Ramani, Chopra A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. Infection. 2021;49(4):591-605. doi:10.1007/s15010-021-01602-z
17. Ruiz-Bastián M, Falces-Romero I, Ramos-Ramos JC, de Pablos M, García-Rodríguez J; SARS-CoV-2 Working Group. Bacterial co-infections in COVID-19 pneumonia in a tertiary care hospital: Surfing the first wave. Diagn Microbiol Infect Dis. 2021;101(3):115477. doi:10.1016/j.diagmicrobio.2021.115477
18. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American thoracic society and infectious diseases society of America. Am J Respir Crit Care Med. 2019;200(7):e45–e67 doi: 10.1164/rccm.201908-1581ST
19. Timbrook TT, Hueth KD, Ginocchio CC. Identification of bacterial co-detections in COVID-19 critically Ill patients by BioFire® FilmArray® pneumonia panel: a systematic review and meta-analysis. Diagn Microbiol Infect Dis. 2021;101(3):115476. doi:10.1016/j.diagmicrobio.2021.115476
20. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet. 2011 Apr 9; 377(9773):1264-75. doi: 10.1016/S0140-6736(10)61459-6
21. Chong WH, Saha BK, Ananthakrishnan Ramani, Chopra A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. Infection. 2021; 49(4):591-605. doi:10.1007/s15010-021-01602-z
22. Peng J, Wang Q, Mei H, et al. Fungal co-infection in COVID-19 patients: evidence from a systematic review and meta-analysis. Aging (Albany NY). 2021;13(6):7745-7757. doi:10.18632/aging.202742
23. Torres NF, Chibi B, Middleton LE, Solomon VP, Mashamba-Thompson TP. Evidence of factors influencing self-medication with antibiotics in low and middle-income countries: a systematic scoping review. Public Health. 2019;168:92-101. doi: 10.1016/j.puhe.2018.11.018.
24. Lescure D, Paget J, Schellevis F, van Dijk L. Determinants of Self-Medication With Antibiotics in European and Anglo-Saxon Countries: A Systematic Review of the Literature. Front Public Health. 2018;6:370. doi: 10.3389/fpubh.2018.00370
25. Sunny TP, Jacob R, Krishnakumar K, Varghese S. Self-medication: Is a serious challenge to control antibiotic resistance? Natl. J. Physiol. Pharm. Pharmacol. 2019; 9:821–827. doi: 10.5455/njppp.2019.9.0620508062019.
26. Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis. 2021;11(9):692-701. doi: 10.1016/S1473-3099(11)70054-8
27. Rajkumar RP. COVID-19 and mental health: A review of the existing literature. Asian J Psychiatr. 2020 Aug;52:102066. doi: 10.1016/j.ajp.2020.102066
28. Zhang A, Hobman EV, De Barro P, Young A, Carter DJ, Byrne M. Self-Medication with Antibiotics for Protection against COVID-19: The Role of Psychological Distress, Knowledge of, and Experiences with Antibiotics. Antibiotics (Basel). 2021;10(3):232. doi:10.3390/antibiotics10030232
29. Quincho-Lopez A, Benites-Ibarra CA, Hilario-Gomez MM, Quijano-Escate R, Taype-Rondan A. Self-medication practices to prevent or manage COVID-19: A systematic review. PLoS One. 2021;16(11):e0259317. doi:10.1371/journal.pone.0259317
30. Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health. 2020; 20(1):1193. doi: 10.1186/s12889-020-09301-4
31. Entezarjou A, Calling S, Bhattacharyya T, et al. Antibiotic Prescription Rates After eVisits Versus Office Visits in Primary Care: Observational Study. JMIR Med Inform. 2021;9(3):e25473. doi:10.2196/25473)
32. Ray KN, Shi Z, Gidengil CA, Poon SJ, Uscher-Pines L, Mehrotra A. Antibiotic Prescribing During Pediatric Direct-to-Consumer Telemedicine Visits. Pediatrics. 2019;143(5):e20182491. doi:10.1542/peds.2018-2491
33. Ray KN, Martin JM, Wolfson D, Schweiberger K, Schoemer P, Cepullio C, et al. Antibiotic Prescribing for Acute Respiratory Tract Infections During Telemedicine Visits Within a Pediatric Primary Care Network. Acad Pediatr. 2021;21(7):1239-1243. doi: 10.1016/j.acap.2021.03.008
34. Merchel Piovesan Pereira B, Tagkopoulos I. Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Appl Environ Microbiol. 2019;85(13):e00377-19. doi: 10.1128/AEM.00377-19
35. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5(1):48–56. doi: 10.1038/nrmicro1557
36. Rizvi SG, Ahammad SZ. COVID-19 and antimicrobial resistance: A cross-study. Sci Total Environ. 2021; 807(2):150873. doi:10.1016/j.scitotenv.2021.150873
37. Tomczyk S, Taylor A, Brown A, de Kraker M, El-Saed A, Alshamrani M, et al. Impact of the COVID-19 pandemic on the surveillance, prevention and control of antimicrobial resistance: a global survey. J Antimicrob Chemother. 2021;76(11):3045-3058. doi:10.1093/jac/dkab300
38. Hirabayashi A, Kajihara T, Yahara K, Shibayama K, Sugai M. Impact of the COVID-19 pandemic on the surveillance of antimicrobial resistance. J Hosp Infect. 2021;117:147-156. doi:10.1016/j.jhin.2021.09.011
39. McNeil JC, Flores AR, Kaplan SL, Hulten KG. The indirect impact of the SARS-CoV-2 pandemic on invasive group A Streptococcus, Streptococcus Pneumoniae and Staphylococcus Aureus infections in Houston area children. Pediatr Infect Dis J. 2021;40(8):e313–e316 doi: 10.1097/INF.0000000000003195.