MATERNALNO-FETALNA INTERAKCIJA I MODULIRANJE U STVARANJU NOVE POPULACIJE: PREGLED POSTOJEĆIH DOKAZA O POVEZANOSTI FETALNE ISHRANE I RAZVOJA HRONIČNIH BOLESTI U TOKU ŽIVOTA

  • Ivana Novaković Klinika za ginekologiju i akušerstvo, Univerzitetski Klinički centar Srbije, Beograd, Srbija
  • Jovana Todorović Institut za socijalnu medicinu, Medicinski fakultet, Univerzitet u Beogradu, Beograd, Srbija
  • Stefan Dugalić Klinika za ginekologiju i akušerstvo, Univerzitetski Klinički centar Srbije, Beograd, Srbija
  • Miroslava Gojnić Klinika za ginekologiju i akušerstvo, Univerzitetski Klinički centar Srbije, Beograd, Srbija
Ključne reči: fetalno programiranje, malnutricija, hronične bolesti

Sažetak


Koncept fetalnog programiranja pronašao je svoje mesto u nauci i nastavlja da kontinuirano osvetlljava put ka boljem razumevanju fetalnog života i njegovog uticaja na postnatalni i adultni život. Njegov obim je mnogo širi od uobičajenog prepoznavanja da stanja tokom trudnoće utiču na zdravlje novorođenčeta, što se potvrđuje kontinuiranim prikupljanjem dokaza iz opservacionih studija, kao i iz eksperimentalnih modela. Ono što hipotezu o fetalnom programiranju čini još težom za potvrdu ili prihvatanje jeste činjenica da je period od momenta dejstva stimulusa do posledica dosta dug, kao i brojni faktori koji mogu menjati ovu povezanost tokom života. Uprkos tome, hipoteze o doprinosu suboptimalnog fetalnog rasta i nutricije povećanom riziku od hroničnih bolesti se održavaju - “pothranjenost” in utero, kao i u ranom detinjstvu, trajno menja fiziologiju i metabolizam, što dovodi do povećane predispozicije za hronične bolesti tokom života (hipertenzija, bolest koronarnih arterija, moždani udar, dijabetes, i druge). Svrha ovog rada jeste pregled postojećih dokaza o povezanosti fetalne ishrane i rizika za hronične bolesti u kasnijem životu.

Temeljan pregled literature i analiza različitih vrsta studija fokusiranih na praćenje neonatusa do adultnog doba radi rasvetljavanja značaja fetalnog programiranja.

Veza između suboptimalnog fetalnog rasta i većeg rizika od metaboličkog sindroma, insulinske rezistencije, dijabetesa tipa 2, hipertenzije, sada je pokazana u nekoliko populacija i uzrasnih grupa.

Na osnovu dokaza koji su predstavljeni, može se zaključiti da fetalno programiranje pronalazi svoj značaj i na putu je na postane treći uzročni faktor nastanka hroničnih bolesti u toku života, zajedno sa genetskom predispozicijom i načinom života.

Reference

1. Kwon EJ, Kim YJ. What is fetal programming? a lifetime health is under the control of in utero health. Obstet Gynecol Sci. 2017 Nov;60(6):506-19. doi: 10.5468/ogs.2017.60.6.506.

2. Smith CJ, Ryckman KK. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab Syndr Obes. 2015 Jun 29; 8:295-302. doi: 10.2147/DMSO.S61296.

3. Waterland RA, Garza C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr. 1999 Feb;69(2):179-97. doi: 10.1093/ajcn/69.2.179.

4. Lucas A. Programming by early nutrition: an experimental approach. J Nutr. 1998 Feb;128(2 Suppl):401S-406S. doi: 10.1093/jn/128.2.401S.

5. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001; 60:5-20. doi: 10.1093/bmb/60.1.5.

6. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 2: Mechanisms. Nat Rev Endocrinol. 2014 Jul;10(7):403-11. doi: 10.1038/nrendo.2014.74.

7. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal 'programming' of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007 Jun;3(6):479-88. doi: 10.1038/ncpendmet0515.

8. Phillips DI, Walker BR, Reynolds RM, Flanagan DE, Wood PJ, Osmond C, Barker DJ, Whorwood CB. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension. 2000 Jun;35(6):1301-6. doi: 10.1161/01.hyp.35.6.1301.

9. Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int. 2004 Apr;65(4):1339-48. doi: 10.1111/j.1523-1755.2004.00511.x.

10. Langley-Evans SC. Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc Nutr Soc. 2001 Nov;60(4):505-13. doi: 10.1079/pns2001111.

11. Stocker CJ, Arch JR, Cawthorne MA. Fetal origins of insulin resistance and obesity. Proc Nutr Soc. 2005 May;64(2):143-51. doi: 10.1079/pns2005417.

12. Riveline JP, Baz B, Nguewa JL, Vidal-Trecan T, Ibrahim F, Boudou P, et al. Exposure to Glucocorticoids in the First Part of Fetal Life is Associated with Insulin Secretory Defect in Adult Humans. J Clin Endocrinol Metab. 2020 Mar 1;105(3): dgz145. doi: 10.1210/clinem/dgz145.

13. Gluckman PD. Clinical review 68: The endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. J Clin Endocrinol Metab. 1995 Apr;80(4):1047-50. doi: 10.1210/jcem.80.4.7714063.

14. Cianfarani S, Geremia C, Scott CD, Germani D. Growth, IGF system, and cortisol in children with intrauterine growth retardation: is catch-up growth affected by reprogramming of the hypothalamic-pituitary-adrenal axis? Pediatr Res. 2002 Jan;51(1):94-9. doi: 10.1203/00006450-200201000-00017.

15. Renes JS, van Doorn J, Hokken-Koelega ACS. Current Insights into the Role of the Growth Hormone-Insulin-Like Growth Factor System in Short Children Born Small for Gestational Age. Horm Res Paediatr. 2019;92(1):15-27. doi: 10.1159/000502739.

16. Cianfarani S, Germani D, Branca F. Low birthweight and adult insulin resistance: the "catch-up growth" hypothesis. Arch Dis Child Fetal Neonatal Ed. 1999 Jul;81(1): F71-3. doi: 10.1136/fn.81.1.f71.

17. Vanhees K, Vonhögen IG, van Schooten FJ, Godschalk RW. You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring. Cell Mol Life Sci. 2014 Jan;71(2):271-85. doi: 10.1007/s00018-013-1427-9.

18. Mathews F, Yudkin P, Neil A. Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ. 1999 Aug 7;319(7206):339-43. doi: 10.1136/bmj.319.7206.339.

19. Sakali AK, Bargiota A, Fatouros IG, Jamurtas A, Macut D, Mastorakos G, Papagianni M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients. 2021 Nov 22;13(11):4184. doi: 10.3390/nu13114184. 

20. Sakali AK, Papagianni M, Bargiota A, Rasic-Markovic A, Macut D, Mastorakos G. Environmental factors affecting pregnancy outcomes. Endocrine. 2023 Jun;80(3):459-469. doi: 10.1007/s12020-023-03307-9.

21. Mohanty C, Prasad R, Srikanth Reddy A, Ghosh JK, Singh TB, Das BK. Maternal anthropometry as predictors of low birth weight. J Trop Pediatr. 2006 Feb;52(1):24-9. doi: 10.1093/tropej/fmi059.

22. Todorovic J, Terzic-Supic Z, Gojnic-Dugalic M, Dugalic S, Piperac P. Sensitivity and specificity of anthropometric measures during early pregnancy for prediction of development of gestational diabetes mellitus. Minerva Endocrinol (Torino). 2021 Mar;46(1):124-6. doi: 10.23736/S2724-6507.20.03151-X.

23. Dugalic S, Petronijevic M, Vasiljevic B, Todorovic J, Stanisavljevic D, Jotic A, et al. Trends of the Prevalence of Pre-gestational Diabetes in 2030 and 2050 in Belgrade Cohort. Int J Environ Res Public Health. 2022 May 27;19(11):6517. doi: 10.3390/ijerph19116517.

24. Gojnic M, Todorovic J, Stanisavljevic D, Jotic A, Lukic L, Milicic T, et al. Maternal and Fetal Outcomes among Pregnant Women with Diabetes. Int J Environ Res Public Health. 2022 Mar 20;19(6):3684. doi: 10.3390/ijerph19063684.

25. Seneviratne SN, Rajindrajith S. Fetal programming of obesity and type 2 diabetes. World J Diabetes. 2022 Jul 15;13(7):482-97. doi: 10.4239/wjd.v13.i7.482.

26. Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab. 2000 Apr;85(4):1401-6. doi: 10.1210/jcem.85.4.6544.

27. Jaquet D, Leger J, Tabone MD, Czernichow P, Levy-Marchal C. High serum leptin concentrations during catch-up growth of children born with intrauterine growth retardation. J Clin Endocrinol Metab. 1999 Jun;84(6):1949-53. doi: 10.1210/jcem.84.6.5744.

28. Martín-Calvo N, Goni L, Tur JA, Martínez JA. Low birth weight and small for gestational age are associated with complications of childhood and adolescence obesity: Systematic review and meta-analysis. Obes Rev. 2022 Jan;23 Suppl 1: e13380. doi: 10.1111/obr.13380.

29. Motte-Signoret E, Shankar-Aguilera S, Brailly-Tabard S, Soreze Y, Dell Orto V, Ben Ammar R et al. Small for Gestational Age Preterm Neonates Exhibit Defective GH/IGF1 Signaling Pathway. Front Pediatr. 2021 Aug 10; 9:711400. doi: 10.3389/fped.2021.711400.

30. Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS, Phillips DI. Fetal growth and the physiological control of glucose tolerance in adults: a minimal model analysis. Am J Physiol Endocrinol Metab. 2000 Apr;278(4): E700-6. doi: 10.1152/ajpendo.2000.278.4.E700.

31. Knop MR, Geng TT, Gorny AW, Ding R, Li C, Ley SH, et al. Birth Weight and Risk of Type 2 Diabetes Mellitus, Cardiovascular Disease, and Hypertension in Adults: A Meta-Analysis of 7 646 267 Participants From 135 Studies. J Am Heart Assoc. 2018 Dec 4;7(23): e008870. doi: 10.1161/JAHA.118.008870. PMID: 30486715; PMCID: PMC6405546.

32. Syddall HE, Sayer AA, Simmonds SJ, Osmond C, Cox V, Dennison EM, et al. Birth weight, infant weight gain, and cause-specific mortality: the Hertfordshire Cohort Study. Am J Epidemiol. 2005 Jun 1;161(11):1074-80. doi: 10.1093/aje/kwi137. PMID: 15901628.

33. Forsén T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med. 2000 Aug 1;133(3):176-82. doi: 10.7326/0003-4819-133-3-200008010-00008.

34. Yajnik CS. Nutrient-mediated teratogenesis and fuel-mediated teratogenesis: two pathways of intrauterine programming of diabetes. Int J Gynaecol Obstet. 2009 Mar;104 Suppl 1: S27-31. doi: 10.1016/j.ijgo.2008.11.034.

35. Singh R, Shaw J, Zimmet P. Epidemiology of childhood type 2 diabetes in the developing world. Pediatr Diabetes. 2004 Sep;5(3):154-68. doi: 10.1111/j.1399-543X.2004.00060.x.

36. Carlsson S, Persson PG, Alvarsson M, Efendic S, Norman A, Svanström L, et al. Low birth weight, family history of diabetes, and glucose intolerance in Swedish middle-aged men. Diabetes Care. 1999 Jul;22(7):1043-7. doi: 10.2337/diacare.22.7.1043.

37. Dabelea D, Pettitt DJ, Hanson RL, Imperatore G, Bennett PH, Knowler WC. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults. Diabetes Care. 1999 Jun;22(6):944-50. doi: 10.2337/diacare.22.6.944.

38. Olaiya MT, Wedekind LE, Hanson RL, Sinha M, Kobes S, Nelson RG, et al. Birthweight and early-onset type 2 diabetes in American Indians: differential effects in adolescents and young adults and additive effects of genotype, BMI and maternal diabetes. Diabetologia. 2019 Sep;62(9):1628-1637. doi: 10.1007/s00125-019-4899-9. 

39. Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens. 1996 Aug;14(8):935-41.

40. Alexander BT, Dasinger JH, Intapad S. Fetal programming and cardiovascular pathology. Compr Physiol. 2015 Apr;5(2):997-1025. doi: 10.1002/cphy.c140036.

41. Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ. 1993 Feb 13;306(6875):422-6. doi: 10.1136/bmj.306.6875.422.

42. Kajantie E, Fall CH, Seppälä M, Koistinen R, Dunkel L, Ylihärsilä H, et al. Serum insulin-like growth factor (IGF)-I and IGF-binding protein-1 in elderly people: relationships with cardiovascular risk factors, body composition, size at birth, and childhood growth. J Clin Endocrinol Metab. 2003 Mar;88(3):1059-65. doi: 10.1210/jc.2002-021380.

43. Walker BR, McConnachie A, Noon JP, Webb DJ, Watt GC. Contribution of parental blood pressures to association between low birth weight and adult high blood pressure: cross sectional study. BMJ. 1998 Mar 14;316(7134):834-7. doi: 10.1136/bmj.316.7134.834.

44. Grillo MA, Mariani G, Ferraris JR. Prematurity and Low Birth Weight in Neonates as a Risk Factor for Obesity, Hypertension, and Chronic Kidney Disease in Pediatric and Adult Age. Front Med (Lausanne). 2022 Feb 3; 8:769734. doi: 10.3389/fmed.2021.769734.

45. Bonamy AK, Norman M, Kaijser M. Being born too small, too early, or both: does it matter for risk of hypertension in the elderly? Am J Hypertens. 2008 Oct;21(10):1107-10. doi: 10.1038/ajh.2008.241.

46. Grillo MA, Mariani G, Ferraris JR. Prematurity and Low Birth Weight in Neonates as a Risk Factor for Obesity, Hypertension, and Chronic Kidney Disease in Pediatric and Adult Age. Front Med (Lausanne). 2022 Feb 3; 8:769734. doi: 10.3389/fmed.2021.769734.

Objavljeno
2023/09/27
Rubrika
Pregledni članci