Mezenhimske matične ćelije iz periapeksnih lezija moduliraju produkciju citokina od strane lokalnih imunskih ćelija
Sažetak
Uvod/Cilj. Pokazano je da mezenhimske matične ćelije (engl. mesenchymal stem cells – MSC) suprimiraju imunske i inflamacijske reakcije. Međutim, nije poznato da li MSC iz inflamacijom zahvaćenih tkiva, kao što su periapeksne lezije (engl. periapical lesions – PLs) ispoljavaju slične efekte. Upravo je ovo pitanje razmatrano u našem radu čiji cilj je bio da se ispita sposobnost PL-MSC da moduliraju produkciju citokina od strane imunskih ćelija lokalno. Metode. MSC su izolovane iz asimptomatskih (engl. asymptomatic – as) i simptomatskih (engl. symptomatic – sy) PL zuba. Njihov fenotip je određen metodom protočne citofluorimetrije na osnovu detekcije površinskih markera specifičnih za MSC. Antiinflamacijska i imunomodulacijska svojstva PL-MSC ispitivana su merenjem produkcije citokina u kokulturi sa mononuklearnim ćelijama (engl. mononuclear cells – MNCs) izolovanim iz asPLs i syPLs. Nivo produkovanih citokina u supernatantima određivan je ELISA metodom. Rezultati. Obe PL-MSC linije karakterisao je fenotip tipičan za druge tipove MSC u kome je dominirala ekspresija CD29, CD44, CD90, CD105 i CD166 markera. Izolovane PL-MSC linije su, nezavisno od fenotipske sličnosti, ispoljile isti modulacijski efekat na produkciju citokina, ali je odgovor asPL-MNCs i syPL-MNCs bio različit, uprkos sličnom sastavu MNCs u oba tipa lezija. Oba tipa MSC linija inhibirala su produkciju proinflamacijskih citokina kao što su interleukin 1β (IL-1β) i faktor nekroze tumora α (TNF-α). Međutim, produkcija IL-8 bila je snižena jedino u kokulturi sa syPL-MNCs. PL-MSC linije su takođe modulirale produkciju imunoregulacijskih citokina. Produkcija transformišućeg faktora rasta β (TGF-β) bila je povećana u kokulturama sa oba tipa MNC, i asPL-MNCs i syPL-MNCs, a nivo IL-10 bio je povećan jedino u kokulturi sa asPL-MNCs. Zaključak. Naši rezultati pokazuju da PL-MSC doprinose smanjenju lokalne inflamacije i imunskog odgovora, ali je ovaj efekat verovatno manje efikasan u toku egzacerbacije inflamacije u PLs.
Reference
R E F E R E N C E S
Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res 2009; 88(9): 792–806.
Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeu-tics. Annu Rev Biomed Eng 2010; 12: 87 ̶ 117.
Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19(3): 180–92.
Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T, et al. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 2013; 353(1): 65–78.
Rui K, Zhang Z, Tian J, Lin X, Wang X, Ma J, et al. Olfactory ecto-mesenchymal stem cells possess immunoregulatory func-tion and suppress autoimmune arthritis. Cell Mol Immunol 2016; 13(3): 401–8.
Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur. J. Immunol. 2006; 36(10): 2566–73.
Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, et al. Stem/progenitor cells from inflamed human dental pulp re-tain tissue regeneration potential. Regen Med 2010; 5(4): 617–31.
Park J, Kim J, Jung I, Kim JC, Choi S, Cho K, et al. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: In vitro and in vivo evaluations. J Clin Periodontol 2011; 38(8): 721–31.
Djokic J, Tomic S, Cerovic S, Todorovic V, Rudolf R, Colic M. Cha-racterization and immunosuppressive properties of mesen-chymal stem cells from periapical lesions. J Clin Periodontol 2012; 39(9): 807–16.
Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, et al. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev 2011; 20(4): 695–708.
Liapatas S, Nakou M, Rontogianni D. Inflammatory infiltrate of chronic periradicular lesions: An immunohistochemical study. Int Endod J 2003; 36(7): 464–71.
Marton IJ, Kiss C. Overlapping protective and destructive regulatory pathways in apical periodontitis. J Endod 2014; 40(2): 155–63.
Lukic A, Danilovic V, Petrovic R. Comparative immunohistochemical and quantitative analysis of inflammatory cells in symptomatic and asymptomatic chronic periapical lesions. Vojnosanit Pregl 2008; 65(6): 435–40. (Serbian)
Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in oral inflammatory diseases: Apical periodontitis and periodontal disease. J Dent Res 2007; 86(4): 306–19.
Colic M, Gazivoda D, Vucevic D, Vasilijic S, Rudolf R, Lukic A. Proinflammatory and immunoregulatory mechanisms in pe-riapical lesions. Mol Immunol 2009; 47(1): 101–13.
Djokic J, Tomic S, Markovic M, Milosavljevic P, Colic M. Mesen-chymal stem cells from periapical lesions modulate differentiation and functional properties of monocyte-derived dendritic cells. Eur J Immunol 2013; 43(7): 1862–72.
Colic M, Lukic A, Vucevic D, Milosavljevic P, Majstorovic I, Marja-novic M, et al. Correlation between phenotypic characteristics of mononuclear cells isolated from human periapical lesions and their in vitro production of Th1 and Th2 cytokines. Arch Oral Biol 2006; 51(12): 1120–30.
Markovic M, Tomic S, Djokic J, Colic M. Mesenchymal stem cells from periapical lesions upregulate the production of immunoregulatory cytokines by inflammatory cells in culture. Acta Facultatis Medicae Naissensis 2015; 32(3): 171–9.
Dominici M, le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent me-senchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–7.
Chen SC, Marino V, Gronthos S, Bartold PM. Location of puta-tive stem cells in human periodontal ligament. J Periodontal Res 2006; 41(6): 547–53.
Collins DP. Cytokine and cytokine receptor expression as a biological indicator of immune activation: Important considerations in the development of in vitro model systems. J Immunol Methods 2000; 243(1 ̶ 2): 125–45.
Bansal R, Jain A. Current overview on dental stem cells appli-cations in regenerative dentistry. J Nat Sci Biol Med 2015; 6(1): 29–34.
Hilkens P, Meschi N, Lambrechts P, Bronckaers A, Lambrichts I. Dental stem cells in pulp regeneration: near future or long road ahead? Stem Cells Dev 2015; 24(14): 1610–22.
Nair PN. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med 2004; 15(6): 348–81.
Wuyts A, Proost P, Lenaerts JP, Ben-Baruch A, van Damme J, Wang JM. Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur J Bio-chem 1998; 255(1): 67–73.
Colic M, Vasilijic S, Gazivoda D, Vucevic D, Marjanovic M, Lukic A. Interleukin-17 plays a role in exacerbation of inflammation within chronic periapical lesions. Eur J Oral Sci 2007; 115(4): 315–20.
Gabryšová L, Howes A, Saraiva M, O'Garra A. The regulation of IL-10 expression. Curr Top Microbiol Immunol 2014; 380: 157–90.
Colic M, Gazivoda D, Vucevic D, Majstorovic I, Vasilijic S, Rudolf R, et al. Regulatory T-cells in periapical lesions. J Dent Res 2009; 88(11): 997–1002.
Pitt JM, Stavropoulos E, Redford PS, Beebe AM, Bancroft GJ, Young DB, et al. Blockade of IL-10 signaling during bacillus Calmette-Guerin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-gamma and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. J Immunol 2012; 189(8): 4079–87.
Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol 2014; 32: 51–82.
Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Bio-chem 2010; 147(6): 781–92.
Popovic J, Cvetkovic T, Dzopalic T, Mitic A, Nikolic M, Barac R. Concentration of transforming growth factor-beta1 in chronic periapical lesions. Acta Faculatatis Medicae Naissensis 2015; 32(1): 43–9.
