The application of the local histograms of apparent difusion coefficient in differentiation of brain astrocytomas

  • Jelena Mihailović National Cancer Research Center, Belgrade, Serbia
  • Danica Grujičić National Cancer Research Center, Belgrade, Serbia; Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia
  • Slobodan Lavrnić Clinical Center of Serbia, Center for Radiology and Magnetic Resonance, Belgrade
  • Marko Daković Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia
Keywords: astrocytoma;, neoplasm staging;, histology;, diffusion magnetic resonance imaging.

Abstract


Background/Aim. Microstructural diversity of brain astrocytomas makes their diagnostics and differentiation by using the diffusion weighted imaging (DWI) difficult. In this study we used the histogram-based positioning of regions of interests on the apparent diffusion coefficient (ADC) maps in order to restrict the determination of diffusion parameters to regions of interest (ROI) corresponding to maximum cellularity. Success of ADC standard deviation (∆ADC) and kurtosis (K) in differentiation of brain astrocytomas was evaluated. Methods. The thirtyone patients (16 women and 15 men, median age 37 years, age range 6–72 years) with suspected supratentorial astrocytomas were included in the retrospective study. The magnetic resonance imaging (MRI) examinations were performed using the 1.5 T MR system (Avanto; Siemens, Erlangen, Germany) and 8-channel phased array head coil. The DWI images were acquired in three orthogonal directions for the b-values 0, 500 and 1000 s mm-2. The histogram calculations and determination of diffusion parameters were performed using the MIPAV software package and the statistical analysis was done in the Openstat software. Results. The ADC values enabled differentiation of diffuse astrocytomas (DA) from a high-grade astrocytoma (HGA), but not between the classes of HGA. In addition, the ∆ADC value provided discrimination between the anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM) with 100% of sensitivity and 89% of specificity . The kurtosis value can also differentiate between the grades AA and GBM although with the lower sensitivity and specificity. Conclusion. The histogram analysis of tumor region on the ADC maps can provide a guidance for an appropriate choice of the ROIs. The parameters which characterize diffusion of such defined ROIs, as well as their combination can improve differentiation of brain astrocytomas.

References

REFERENCES

Hayat MA. Tumors of the Central Nervous System: Astrocy-tomas, Hemangioblastomas, and Gangliogliomas. Volume 5. 1st ed. Dordrecht, Netherlands: Springer; 2011.

Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF. The significance of lack of MR contrast enhancement of su-pratentorial brain tumors in adults: Histopathological evalua-tion of a series. Surg Neurol 1998; 49(4): 436‒40.

Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imag-ing: Correlation with histologic grade. AJNR Am J Neuroradi-ol 2000; 21(5): 891‒9.

Lüdemann L, Grieger W, Wurm R, Budzisch M, Hamm B, Zim-mer C. Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas. Eur Radiol 2001; 11(7): 1231‒41.

Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 1991; 7(1): 1‒30.

Moritani T, Ekholm S, Westesson PL. Diffusion weighted imag-ing of the brain. Berlin: Springer-Verlag; 2005.

Johansen-Berg H, Behrens TE. Diffusion MRI: From quantita-tive measurement to in-vivo neuroanatomy. San Diego: Aca-demic Press; 2009.

Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9(1): 53‒60.

Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001; 22(6): 1081‒8.

Calvar JA, Meli FJ, Romero C, Calcagno ML, Yánez P, Martinez AR, et al. Characterization of brain tumors by MRS, DWI and Ki-67 labeling index. J Neurooncol 2005; 72(3): 273‒80.

Chenevert TL, Sundgren PC, Ross BD. Diffusion imaging: Insight to cell status and cytoarchitecture. Neuroimaging Clin N Am 2006; 16(4): 619‒32, viii-ix.

Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R, Korogi Y, et al. Diffusion-weighted imaging of metastatic brain tumors: Comparison with histologic type and tumor cellulari-ty. AJNR Am J Neuroradiol 2006; 27(7): 1419‒25.

Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in gli-oma: Does it have any role in the pre-operation determination of grading of glioma? Clin Radiol 2002; 57(3): 219‒25.

Catalaa I, Henry R, Dillon WP, Graves EE, McKnight TR, Lu Y, et al. Perfusion, diffusion and spectroscopy values in newly di-agnosed cerebral gliomas. NMR Biomed 2006; 19(4): 463‒75.

Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 2005; 107(3): 174‒80.

Bulakbasi N, Guvenc I, Onguru O, Erdogan E, Tayfun C, Ucoz T. The added value of the apparent diffusion coefficient calcula-tion to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 2004; 28(6): 735‒46.

Kitis O, Altay H, Calli C, Yunten N, Akalin T, Yurtseven T. Min-imum apparent diffusion coefficients in the evaluation of brain tumors. Eur J Radiol 2005; 55(3): 393‒400.

Yamasaki F, Kurisu K, Satoh K, Arita K, Sugiyama K, Ohtaki M, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 2005; 235(3): 985‒91.

Fan G, Zang P, Jing F, Wu Z, Guo Q. Usefulness of diffu-sion/perfusion-weighted MRI in rat gliomas: Correlation with histopathology. Acad Radiol 2005; 12(5): 640‒51.

Arvinda HR, Kesavadas C, Sarma PS, Thomas B, Radhakrishnan VV, Gupta AK, et al. Glioma grading: Sensitivity, specificity, positive and negative predictive values of diffusion and perfu-sion imaging. J Neurooncol 2009; 94(1): 87‒96.

Tozer DJ, Jäger RH, Danchaivijitr N, Benton CE, Tofts PS, Rees JH, et al. Apparent diffusion coefficient histograms may pre-dict low-grade glioma subtype. NMR Biomed 2007; 20(1): 49‒57.

Kang Y, Choi SH, Kim Y, Kim KG, Sohn C, Kim J, et al. Glio-mas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imag-ing: correlation with tumor grade. Radiology 2011; 261(3): 882‒90.

Beppu T, Inoue T, Shibata Y, Kurose A, Arai H, Ogasawara K, et al. Measurement of fractional anisotropy using diffusion ten-sor MRI in supratentorial astrocytic tumors. J Neurooncol 2003; 63(2): 109‒16.

Field AS, Alexander AL, Wu Y, Hasan KM, Witwer B, Badie B. Diffusion tensor eigenvector directional color imaging pat-terns in the evaluation of cerebral white matter tracts altered by tumor. J Magn Reson Imaging 2004; 20(4): 555‒62.

Ferda J, Kastner J, Mukenšnabl P, Choc M, Horemužová J, Ferdová E, et al. Diffusion tensor magnetic resonance imaging of glial brain tumors. Eur J Radiol 2010; 74(3): 428‒36.

Tsuchiya K, Fujikawa A, Nakajima M, Honya K. Differentiation between solitary brain metastasis and high-grade glioma by dif-fusion tensor imaging. Br J Radiol 2005; 78(930): 533‒7.

Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffu-sional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53(6): 1432‒40.

Hui ES, Cheung MM, Qi L, Wu EX. Advanced MR diffusion characterization of neural tissue using directional diffusion kurtosis analysis. Conf Proc IEEE Eng Med Biol Soc 2008; 2008: 3941‒4.

Jensen JH, Falangola MF, Hu C, Tabesh A, Rapalino O, Lo C, et al. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR Bi-omed 2011; 24(5): 452‒7.

Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cere-bral gliomas: Diffusional kurtosis imaging analysis of micro-structural differences. Radiology 2010; 254(3): 876‒81.

Mcauliffe MJ, Lalonde FM, Mcgarry D, Gandler W, Csaky K, Trus BL. Medical Image Processing, Analysis and Visualization in clinical research. In: 14th IEEE Symposium on 2001 Com-puter-Based Medical Systems, CBMS 2001. Proceedings 2011. p. 381–6.

Miller W. Open Stat Reference Manual. New York, NY: Springer; 2013.

Reardon DA, Wen PY. Therapeutic advances in the treatment of glioblastoma: Rationale and potential role of targeted agents. Oncologist 2006; 11(2): 152‒64.

Fan GG, Deng QL, Wu ZH, Guo QY. Usefulness of diffu-sion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: A valuable tool to predict tu-mour grading? Br J Radiol 2006; 79(944): 652‒8.

Murakami R, Hirai T, Sugahara T, Fukuoka H, Toya R, Nishi-mura S, et al. Grading astrocytic tumors by using apparent dif-fusion coefficient parameters: Superiority of a one- versus two-parameter pilot method. Radiology 2009; 251(3): 838‒45.

Yang D, Korogi Y, Sugahara T, Kitajima M, Shigematsu Y, Liang L, et al. Cerebral gliomas: Prospective comparison of multi-voxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuro-radiology 2002; 44(8): 656‒66.

Higano S, Yun X, Kumabe T, Watanabe M, Mugikura S, Umetsu A, et al. Malignant astrocytic tumors: Clinical importance of apparent diffusion coefficient in prediction of grade and prog-nosis. Radiology 2006; 241(3): 839‒46.

Bosma GT, Huizinga TW, Mooijaart SP, Van Buchem MA. Ab-normal brain diffusivity in patients with neuropsychiatric sys-temic lupus erythematosus. AJNR Am J Neuroradiol 2003; 24(5): 850‒4.

Published
2021/02/10
Section
Original Paper