The potential implications of exercise-induced epigenetic modifications

  • Biljana Vitosevic University of Kosovska Mitrovica, Faculty for Sport and Physical Education, Leposavić, Serbia
  • Miroslav Smajić University of Novi Sad, Faculty of Sport and Physical Education, Novi Sad, Serbia
  • Goran Dimitrić University of Novi Sad, Faculty of Sport and Physical Education, Novi Sad, Serbia
  • Dino Buković University of Zagreb, School of Dental Medicine, Department of Prosthodontics, Zagreb, Croatia
  • Ivana Bojic University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
  • Božana Radanović University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
  • Branka Protić-Gava University of Novi Sad,Faculty of Sport and Physical Education, Novi Sad, Serbia
  • Milica Filipović University of Kosovska Mitrovica, Faculty for Sport and Physical Education, Leposavić, Serbia
Keywords: epigenomics, muscles, exercise, gene expression regulation, health

References

REFERENCES

Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol 2014; 2: 49.

Davids K, Baker J. Davids K, Baker J. Genes, environment and sport performance: why the nature-nurture dualism is no long-er relevant. Sports Med 2007; 37(11): 961‒80.

Fluck M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 2006; 209(Pt 12): 2239‒48.

Ehlert T, Simon P, Moser DA. Epigenetics in sports. Sports Med 2013; 43(2): 93‒110.

Ntanasis-Stathopoulos J, Tzanninis JG, Philippou A, Koutsilieris M. Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact 2013; 13(2): 133‒46.

Pareja-Galeano H, Sanchis-Gomar F, García-Giménez JL. Physical Exercise and Epigenetic Modulation: Elucidating Intricate Mechanisms. Sports Med 2014; 44(4): 429‒36.

Fritz T, Krämer DK, Karlsson HK, Galuska D, Engfeldt P, Zierath JR, et al. Low-intensity exercise increases skeletal muscle pro-tein expression of PPARdelta and UCP3 in type 2 diabetic patients. Diabetes Metab Res Rev 2006; 22(6): 492‒8.

Barrès R, Yan J, Egan B, Treebak J, Rasmussen M, Fritz T, et al. Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle. Cell Metab 2012; 15(3): 405‒11.

Zhang H, Zhang X, Clark E, Mulcahey M, Huang S, Shi YG. TET1 is a DNA-binding protein that modulates DNA methy-lation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res 2010; 20(12): 1390‒3.

Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequenc-ing. PLoS ONE 2010; 5(1): e8888.

Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128(4): 707‒19.

McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol (1985) 2011; 110(1): 258‒63.

Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor coactivator 1 (PGC-1) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci U S A 2003; 100(4): 1711‒6.

Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, Olson EN. Histone deacetylase degradation andMEF2 activa-tion promote the formation of slow-twitch myofibers. J Clin Invest 2007; 117(9): 2459‒67.

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 2005; 120(1): 15‒20.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281‒97.

Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 2006; 103(23): 8721‒618.

Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS ONE 2014; 9(2): e87308

Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol 2011; 110(2): 309‒17.

Hoppeler H, Vogt M, Weibel ER, Flück M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 2004; 88(1): 109‒19.

McDonnell F, O’Brien C, Wallace D. The role of epigenetics in the fibrotic processes associated with glaucoma. J Ophthalmol 2014; 2014: 750459.

Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen con-sumption and usage during physical exercise: the balance be-tween oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18(10): 1208‒46.

van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics and human obesity. Int J Obes 2015; 39(1): 85‒97.

Herman JJ, Spencer HG, Donohue K, Sultan SE. How stable “should” epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 2013; 68(3): 632‒43.

Mirbahai L, Chipman JK. Epigenetic memory of environmental organisms: A reflection of lifetime stressor exposures. Mutat Res Genet Toxicol Environ Mutagen 2014; 764‒765: 10‒7.

Sharples AP, Stewart CE, Seaborne RA. Does skeletal muscle have an ‘epi’-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise. Aging Cell 2016; 15(4): 603‒16.

Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A Six Months Exercise Intervention Influences the Ge-nome-wide DNA Methylation Pattern in Human Adipose Tis-sue. PLoS Genet 2013; 9(6): e1003572

Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, et al. Inhibition of Class I Histone Deacetylases Unveils a Mito-chondrial Signature and Enhances Oxidative Metabolism in Skeletal Muscle and Adipose Tissue. Diabetes 2013; 62(3): 732‒42.

Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G, et al. Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 2010; 8(1): 87.

Ling C, Groop L. Epigenetics: a molecular link between envi-ronmental factors and type 2 diabetes. Diabetes 2009; 58(12): 2718‒25.

Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Med Hypotheses 2014; 82(6): 748‒53.

Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an exercise intervention on dna methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012; 61(12): 3322‒32.

Edgett BA, Foster WS, Hankinson PB, Simpson CA, Little JP, Graham RB, et al. Dissociation of increases in PGC-1α and its regulators from exercise intensity and muscle activation following acute exercise. PLoS ONE 2013; 8(8): e71623.

Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol (Oxf) 2014; 213(1): 39‒59.

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194‒217.

Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2015; 18(1): 57‒89.

Song Z, Von Figura G, Liu Y, Kraus JM, Torrice C, Dillon P, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell 2010; 9(4): 607‒15.

Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bio-informatics meta-analysis. Br J Sports Med 2015; 49(24): 1567‒78.

Radak Z, Marton O, Nagy E, Koltai E, Goto S. The complex role of physical exercise and reactive oxygen species on brain. J Sport Health Sci 2013; 2(2): 87‒93.

Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors 2004; 22(3): 123‒31.

Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, et al. Exercise effects on methylation of ASC gene. Int J Sports Med 2010; 31(9): 671‒5.

McDonald OG, Owens GK. Programming smooth muscle plas-ticity with chromatin dynamics. Circ Res 2007; 100(10): 1428‒41.

Zimmer P, Bloch W, Schenk A, Zopf E, Hildebrandt U, Streckmann F, et al. Exercise-induced natural killer cell activation is driven by epigenetic modifications. Int J Sports Med 2015; 36(6): 510‒15.

Zimmer P, Bloch W. Physical exercise and epigenetic adaptations of the cardiovascular system. Herz 2015; 40(3): 353‒60.

Vital TM, Stein AM, de Melo CF, Arantes FJ, Teodorov E, Santos-Galduróz RF. Physical exercise and vascular endothelial growth factor (VEGF) in elderly: a systematic review. Arch Gerontol Geriatr 2014; 59(2): 234‒9.

Bloch W, Suhr F, Zimmer P. Molecular mechanisms of exercise-induced cardiovascular adaptations influence of epigenetics, mechanotransduction and free radicals. Herz 2012; 37(5): 508‒17.

Baccarelli A, Rienstra M, Benjamin EJ. Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet 2010; 3(6): 567‒73.

Fernandes T, Soci UP, Oliveira EM. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 2011; 44(9): 836‒47.

Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekström TJ, Tegnér J, et al. An integrative analysis reveals coor-dinated reprogramming of the epigenome and the transcrip-tome in human skeletal muscle after training. Epigenetics 2014; 9(12): 1557‒69.

Published
2021/07/06
Section
Current Topic