Antioxidant status and clinicopathological parameters in patients with Parkinson's disease

  • Jadranka Miletić Vukajlović Univerzitet u BeograduInstitut za nuklearne nauke VinčaLaboratorija za fizičku hemiju
  • Snežana Pejić Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
  • Ana Todorović Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
  • Ana Valenta Šobot Department of Physical Chemistry, VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
  • Dunja Drakulić Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
  • Ivan Pavlović Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
  • Aleksandra Stefanović Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Republic of Serbia
  • Milica Prostran Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine – University of Belgrade, Belgrade, Republic of Serbia
  • Tihomir V Ilić University of Defense, Faculty of Medical Military Academy; Military Medical Academy, Clinic of Neurology, Belgrade, Republic of Serbia
  • Marina Stojanov Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Republic of Serbia
Ključne reči: parkinsonova bolest;, bolest, progresija;, slobodni radikali;, antioksidansi;, demografija

Sažetak


Uvod/Cilj. Ćelijska homeostaza zasniva se na konstantnoj produkciji slobodnih radikala i antioksidanasa (AO). Svako narušavanje njihove ravnoteže može dovesti ili učestvovati u patofiziološkim promenama mnogih bolesti, uključujući i Parkinsonovu bolest (PB). Kako bi se pratio status bolesti, koristi se veliki broj parametara, uključujući i prooksidativni-antioksidativni balans (PAB) i AO, koji ujedno predstavljaju i fokus ispitivanja ove studije. Stoga, cilj ove studije je bilo ispitivanje potencijalne interakcije između AO varijabli: glutation (GSH), superoksid dismutaza (SOD), katalaza (CAT) i PAB i kliničko-patoloških osobina PB bolesnika, najviše Hoehn i Yahr (H&Y) stepena bolesti. Metode. Multivarijantna analiza varijanse (MANOVA) korišćena je za analizu međusobnih razlika između kliničko-patoloških karakteristika (pola, starosti, dužine trajanja bolesti i H&Y stepena bolesti) i AO varijabli bolesnika sa PD sa onima od zdravih osoba. Studija je uključila ukupno 111 ispitanika, 91 bolesnika kojima je dijagnostifikovana idiopatska PB i 20 zdravih osoba. Rezultati. Multivarijantni efekat je bio procenjen na 0,269 (p < 0,000), što implicira da se 27,0% varijanse zavisne varijable odnosi na H&Y stepen bolesti. Univarijantni test je pokazao da postoji statistički značajna razlika (< 0,001) kroz H&Y stepen bolesti svih AO varijabli. H&Y stepen bolesti ostao je značajan predikator i nakon uvođenja druge varijable, dužine trajanja bolesti (p < 0,001; η2 = 0,249). Pokazano je da je ostala značajna razlika kroz H&Y stepen bolesti za sve varijable, tako da se jačina odnosa dve varijable kretala od 0,132 (lnGSH) do i dalje visokih vrednosti: 0,535 (lnPAB), 0,627 (lnSOD) i 0,964 (lnCAT). Zaključak. Rezultati pokazuju da je visoki nivo oksidativnog stresa u krvi obolelih od PB verovatno povezan sa stepenom bolesti. Zajedno sa smanjenjem aktivnosti SOD i nivoa GSH, aktivnost CAT se povećava u poređenju sa ovim vrednostima kod zdravih osoba. Pored toga, PAB ukazuje na povećani oksidativni stres kod obolelih od PB.

Biografija autora

Jadranka Miletić Vukajlović, Univerzitet u BeograduInstitut za nuklearne nauke VinčaLaboratorija za fizičku hemiju

Laboratorija za fizičku hemiju

istraživač saradnik

Reference

Jinsmaa Y, Florang VR, Rees JN, Mexas LM, Eckert LL, Allen EM, et al. Dopamine-derived biological reactive intermediates and protein modifications: Implications for Parkinson's dis-ease. Chem Biol Interact 2011; 192(1–2): 118–21.

Kalia LV, Lng AE. Parkinson’s disease. Lancet 2015; 386(9996): 896–912.

Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. Front Neuroanat 2015; 9: 91.

Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen spe-cies: physiology and pathophysiology. Int J Mol Sci 2013; 14(3): 6306–44.

Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47–95.

Gandhi S, Abramov AY. Mechanism of oxidative stress in neu-rodegeneration. Oxid Med Cell Longev 2012; 2012: 428010.

Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013; 51: 15–25.

Fridovich I. Superoxide radical and superoxide dismutases. An-nu Rev Biochem 1995; 64: 97–112.

Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegenera-tion, and the balance of protein degradation and protein syn-thesis. Free Radic Biol Med 2013; 62: 170–85.

Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disul-fide/glutathione couple. Free Radic Biol Med 2001; 30(11): 1191–212.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological func-tions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44–84.

Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C. Nov-el mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 2005; 16(10): 577–86.

Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids Modulate Pro-Oxidant–Antioxidant Balance but not the Immune Response to Heat Shock Protein 27 and Oxidized LDL in Obese Individuals. Phytother Res 2013; 27(12): 1883–88.

Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychia-try 1992; 55(3): 181–4.

Beutler E. Catalase. In: Beutler E, editor. Red cell metabolism: a manual of biochemical methods. 3rd ed. Orlando, FL: Grune and Stratton; 1984: p. 105–6.

Miletić J, Drakulić D, Pejić S, Petković M, Ilić TV, Miljković M, et al. Prooxidant–antioxidant balance, advanced oxidation pro-tein products and lipid peroxidation in Serbian patients with Parkinson's disease. Int J Neurosci 2018; 128(7): 600–7.

Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: genera-tion and chemical implications. Chem Rev 2016; 116(5): 3029–85.

de la Torre MR, Casado A, López-Fernández ME, Carrascosa D, Casado MC, Venarucci D, et al. Human aging brain disorders: role of antioxidant enzymes. Neurochem Res 1996; 21(8): 885–8.

Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G. Superoxide dismutase activity in early and advanced Parkinson’s disease. Funct Neurol 1997; 12(2): 63–8.

Ihara Y, Chuda M, Kuroda S, Hayabara T. Hydroxyl radical and superoxide dismutase in blood of patients with Parkinson’s isease:relationship to clinical data. J Neurol Sci 1999; 170(2): 75–6.

Abraham S, Soundararajan CC, Vivekanandhan S, Behari M. Erythrocyte antioxidant enzymes in Parkinson’s disease. Indi-an J Med Res 2005; 121(2): 111–5.

Younes-Mhenni S, Frih-Ayed M, Kerkeni A, Bost M, Chazot G. Peripheral blood markers of oxidative stress in Parkinson’s disease. Eur Neurol 2007; 58(2): 78–83.

Kalra J, Rajput AH, Mantha SV, Prasad K. Serum antioxidant enzyme activity in Parkinson’s disease. Mol Cell Biochem 1992; 110(2): 165–8.

Kocaturk PA, Akbostanci MC, Tan F, Kavas GO. Superoxide dismutase activity and zinc and copper concentrations in Par-kinson’s disease. Pathophysiology 2000; 7(1): 63–7.

Serra JA, Dominguez RO, De Lustig ES, Guareschi EM, Famulari AL, Bartolomé EL, et al. Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia pa-tients. J Neural Transm (Vienna) 2001; 108(10): 1135–48.

Barthwal MK, Srivastava N, Shukla R, Nag D, Seth PK, Srirnal RC, et al. Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson's disease patients. Acta Neurol Scand 1999; 100(5): 300–4.

Sudha K, Rao AV, Rao S, Rao A. Free radical toxicity and an-tioxidants in Parkinson’s disease. Neurol India 2003; 51(1): 60–2.

Hu N, Ren J. Reactive Oxygen Species Regulate Myocardial Mitochondria through Post-Translational Modification. ROS 2016; 2(4): 264–71.

Ahmad A, Shameem M, Husain Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmo-nary disease. Int J Tuberc Lung Dis 2013; 17(8): 1104–9.

Aziz MA, Majeed GH, Diab KS, Al-Tamimi RJ. The associa-tion of oxidant–antioxidant status in patients with chronic re-nal failure. Ren Fail 2016; 38(1): 20–6.

Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017; 2017: 2525967.

Polidori MC, Stahl W, Eichler O, Niestroj I, Sies H. Profiles of antioxidants in human plasma. Free Radic Biol Med 2001; 30(5): 456–62.

Durham HD, Roy J, Dong L, Figlewicz DA. Aggregation of mu-tant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 1997; 56(5): 523–30.

Kilinç A, Yalçin AS, Yalçin D, Taga Y, Emerk K. Increased erythrocyte susceptibility to lipid peroxidation in human Park-inson's disease. Neurosci Lett 1988: 87(3): 307–10.

Makino N, Mochizuki Y, Bannai S, Sugita Y. Kinetic studies on the removal of extracellular hydrogen peroxide by cultured fi-broblasts. J Biol Chem 1994; 269(2): 1020–5.

Flohé L, Loschen G, Gunzler WA, Eichele E. Glutathione perox-idase, V. The kinetic mechanism. Hoppe Seylers Z Physiol Chem 1972; 353(6): 987–99.

Todorović A, Pejić S, Stojiljković V, Gavrilović L, Popović N, Pavlović I, et al. Antioxidative enzymes in irradiated rat brain-indicators of different regional radiosensitivity. Childs Nerv Syst 2015; 31(12): 2249–56.

Saleh L, Plieth C. Total low-molecular-weight antioxidants as a summary parameter, quantified in biological samples by a chemiluminescence inhibition assay. Nat Protoc 2010; 5(10): 1627–34.

Alamdari DH, Paletas K, Pegiou T, Sarigianni M, Befani C, Kolia-kos G. A novel assay for the evaluation of the prooxidant-antioxidant balance, before and after antioxidant vitamin ad-ministration in type II diabetes patients. Clin Biochem 2007; 40(3–4): 248–54.

Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkin-son's disease: is this the elephant in the room? Biomed Phar-macother 2008; 62(4): 236–49.

Mischley LK, Standish LJ, Weiss NS, Padowski JM, Kavanagh TJ, White CC, et al. Glutathione as a biomarker in Parkinson’s disease: Associations with aging and disease severity. Oxid Med Cell Longev 2016; 2016: 9409363.

Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52: 711–60.

Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 2014; 5: 196.

Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 2009; 30(1–2): 42–59.

Malone PE, Hernandez MR. 4-Hydroxynonenal, a Product of Oxidative Stress, Leads to an Antioxidant Response in Optic Nerve Head Astrocytes. Exp Eye Res 2007; 84(3): 444–54.

Ballatori N, Krance SM, Marchan R, Hammond CL. Plasma membrane glutathione transporters and their roles in cell phys-iology and pathophysiology. Mol Aspects Med 2009; 30(1–2): 13–28.

Mischley LK, Lau RC, Shankland EG, Wilbur TK, Padowski JM. Phase IIb Study of Intranasal Glutathione in Parkinson’s Dis-ease. J Parkinsons Dis 2017; 7(2): 289–99.

Otto M, Magerus T, Langland J. The Use of Intravenous Gluta-thione for Symptom Management of Parkinson’s Disease: A Case Report. Altern Ther Health Med 2017; pii: AT494.

Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM, et al. Reduced intravenous glutathione in the treatment of early Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20(7): 1159–70.

Objavljeno
2021/04/12
Rubrika
Originalni članak