The relationship between perifoveal capillary ring alterations and visual acuity in diabetic retinopathy

  • Nenad Petrović University Clinical Center Kragujevac, Clinic for Ophthalmology, Kragujevac, Serbia
  • Dušan Todorović University Clinical Center Kragujevac, Clinic for Ophthalmology, Kragujevac, Serbia
  • Sunčica Srećković University Clinical Center Kragujevac, Clinic for Ophthalmology, Kragujevac, Serbia
  • Tatjana Šarenac Vulović University Clinical Center Kragujevac, Clinic for Ophthalmology, Kragujevac, Serbia
  • Svetlana Jovanović University Clinical Center Kragujevac, Clinic for Ophthalmology, Kragujevac, Serbia
  • Svetlana Paunović University Clinical Center Kragujevac, Clinic for Ophthalmology, Kragujevac, Serbia
  • Dejan Vulović University Clinical Center Kragujevac, Center for Plastic Surgery, Kragujevac, Serbia
  • Danijela Randjelović Aero Medical Institute, Clinic for Ophthalmology, Zemun, Serbia
Keywords: diabetic retinopathy, fluorescein angiography, ischemia, macula, retina, visual acuity

Abstract


Background/Aim. The relationship between the foveal avascular zone (FAV) and visual acuity (VA) in retinal diseases remains a matter of discussion. The aim of this study was to determine the impact of diabetic macular ischemia (DMI) on VA through the analysis of the perifoveal capillary network in various stages of diabetic retinopathy - DR (non-proliferative diabetic retinopathy – NPDR and proliferative diabetic retinopathy – PDR). Methods. Qualitative and quantitative analysis of 143 angiograms of patients with different stages of DR was performed. The degree of macular ischemia was assessed by the analysis of 2 parameters: perifoveal capillary ring, ie, the FAZ outline irregularity, and capillary loss. Finally, a comparison was made between the degree of macular ischemia with the best-corrected VA, depending on macular thickness. Results. In the eyes with mild and moderate NPDR, without significant macular thickening, no statistically significant decrease in VA caused by macular ischemia was noticed (p = 0.81). Opposite, in a subgroup with severe NPDR and PDR, without significant macular thickening, a statistically significant difference was presented among eyes with moderate and severe macular ischemia compared to eyes with lower grades of macular ischemia (p = 0.021 and p = 0.018, respectively). In the eyes with moderate NPDR and mild macular ischemia, the increase in macular thickness resulted in a statistically insignificant decrease in VA compared to eyes with a normal macular thickness (p = 0.088). However, in the eyes with severe NPDR, every pathological increase in macular thickness caused a statistically significant decrease in VA, regardless of the degree of macular ischemia (p = 0.018–0.040). A similar relationship was also found in the eyes with PDR (p = 0.017–0.042). In the eyes with a statistically significant decrease in VA, most of the examined eyes (98%) had the FAZ outline irregularity in the nasal perifoveal subfield. Conclusion. In the absence of significant macular thickening, the destruction of one-half of the perifoveal capillary network, or greater, is associated with reduced VA. The location of macular ischemic changes in the nasal parts of the perifoveal capillary ring plays a crucial role in its effects on visual function.

 

References

Klein R, Klein BEK, Moss SE, Cruickshanks K. The Wisconsin Epidemiologic Study of Diabetic Retinopathy, XV: the long-term incidence of macular edema. Ophthalmology 1995; 102(1): 7–16.

Photocoagulation for diabetic macular edema. Early Treat-ment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 1985; 103(12): 1796‒806.

Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 2001; 20(2): 175‒208.

Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, et al. Normative Data for Vascular Density in Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence Tomography Angiography. Invest Oph-thalmol Vis Sci 2016; 57(9): OCT211‒23.

Tan PE, Yu PK, Balaratnasingam C, Cringle S, Morgan WH, McAllister IL, et al. Quantitative confocal imaging of the retinal microvasculature in the human retina. Invest Oph-thalmol Vis Sci 2012; 53(9): 5728–36.

Yu PK, Balaratnasingam C, Cringle SJ, McAllister IL, Provis J, Yu DY. Microstructure and network organization of the micro-vasculature in the human macula. Invest Ophthalmol Vis Sci 2010; 51(12): 6735–43.

Conrath J, Giorgi R, Raccah D, Ridings B. Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment. Eye (Lond) 2005; 19(3): 322‒6.

Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J. The relationship between the foveal avascular zone and fo-veal pit morphology. Invest Ophthalmol Vis Sci 2012; 53(3): 1628–36.

Samara WA, Say EA, Khoo CT, Higgins T, Magrath G, Ferenczy S, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomogra-phy angiography. Retina 2015; 35(11): 2188–95.

Bressler NM, Edwards AR, Antoszyk AN, Beck R, Browning D, Ciardella A, et al. Retinal thickness on Stratus optical coher-ence tomography in people with diabetes and minimal or no diabetic retinopathy. Am J Ophthalmol 2008; 145(5): 894–901.

Byeon SH, Chu YK, Lee H, Lee SY, Kwon OW. Foveal ganglion cell layer damage in ischemic diabetic maculopathy: correla-tion of optical coherence tomography and anatomic changes. Ophthalmology 2009; 116(10): 1949‒59. e8.

Classification of diabetic retinopathy from fluorescein angio-grams. ETDRS report number 11. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98(5 Suppl): 807‒22.

Unoki N, Nishijima K, Sakamoto A, Kita M, Watanabe D, Hangai M, et al. Retinal sensitivity loss and structural disturbance in areas of capillary nonperfusion of eyes with diabetic retinopa-thy. Am J Ophthalmol 2007; 144(5): 755‒60.

Bresnick GH, Condit R, Syrjala S, Groo A, Korth K. Abnormali-ties of the foveal avascular zone in diabetic retinopathy. Arch Ophthalmol 1984; 102(9): 1286–93.

Hilmantel G, Applegate RA, van Heuven WA, Stowers S, Bradley A, Lee B. Entoptic foveal avascular zone measurement and diabetic retinopathy. Optom Vis Sci 1999; 76(12): 826–31.

Mansour AM, Schachat A, Bodiford G, Haymond R. Foveal avas-cular zone in diabetes mellitus. Retina 1993; 13(2): 125–8.

Sander B, Larsen M, Engler C, Lund-Andersen H, Parving HH. Early changes in diabetic retinopathy: capillary loss and blood-retina barrier permeability in relation to metabolic control. Acta Ophthalmol 1994; 72(5): 553–9.

Sim DA, Keane PA, Zarranz-Ventura J, Bunce C, Fruttiger M, Patel P, et al. Predictive factors for the progression of dia-betic macular ischemia. Am J Ophthalmol 2013; 156(4): 684–92.

Bresnick GH, De Venecia G, Myers FL, Harris JA, Davis MD. Retinal ischemia in diabetic retinopathy. Arch Ophthalmol 1975; 93(12): 1300–10.

Salz DA, Witkin AJ. Imaging in diabetic retinopathy. Middle East Afr J Ophthalmol 2015; 22(2): 145‒50.

Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialization and the vulnerability to macular degeneration. Clin Exp Optom 2005; 88(5): 269–81.

Kawamura S, Tachibanaki S. Rod and cone photoreceptors: mo-lecular basis of the difference in their physiology. Comp Bio-chem Physiol a Mol Integr Physiol 2008; 150(4): 369–77.

Snodderly DM, Weinhaus RS. Retinal vasculature of the fovea of the squirrel monkey, Saimiri sciureus: three-dimensional ar-chitecture, visual screening, and relationships to the neuronal layers. J Comp Neurol 1990; 297(1): 145–63.

Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal Capil-lary Density and Foveal Avascular Zone Area Are Age-Dependent: Quantitative Analysis Using Optical Coherence Tomography Angiography Quantitative Analysis Using OCT Angiography. Invest Ophthalmol Vis Sci 2016; 57(13): 5780–7.

Yu J, Jiang C, Wang X, Zhu L, Gu R, Xu H, et al. Macular per-fusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci 2015; 56(5): 3212‒7.

Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, et al. Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship with Ocular Factors. Invest Ophthalmol Vis Sci 2016; 57(9): OCT224‒34.

Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of Foveal Avascular Zone In Diabetic Eyes Evaluated By En Face Optical Coherence Tomography Angi-ography. Retina 2015; 358(11): 2377–83.

Laatikainen L, Larinkari J. Capillary-free area of the fovea with advancing age. Invest Ophthalmol Vis Sci 1977; 16(12): 1154–7.

Mammo Z, Balaratnasingam C, Yu P, Xu J, Heisler M, Mackenzie P, et al. Quantitative noninvasive angiography of the fovea centralis using speckle variance optical coherence tomography. Invest Ophthalmol Vis Sci 2015; 56(9): 5074–86.

Nussenblatt RB, Kaufman SC, Palestine AG, Davis MD, Ferris FL 3rd. Macular thickening and visual acuity. Measurement in patients with cystoid macular edema. Ophthalmology 1987; 94(9): 1134‒9.

Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol 2006; 124(2): 193‒8.

Schaudig UH, Glaefke C, Scholz F, Richard G. Optical coherence tomography for retinal thickness measurement in diabetic pa-tients without clinically significant macular edema. Ophthal-mic Surg Lasers 2000; 31(3): 182‒6.

Sanchez-Tocino H, Alvarez-Vidal A, Maldolnado MJ, Moreno-Montañés J, García-Layana A. Retinal thickness study with op-tical coherence tomography in patients with diabetes. Invest Ophthalmol Vis Sci 2002; 43(5): 1588‒94.

Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R. Pathophys-iology of diabetic retinopathy. ISRN Ophthalmol 2013; 2013: 343560.

Browning DJ, Altaweel MM, Bressler NM, Bressler S, Scott I. Dia-betic macular edema: what is focal and what is diffuse? Am J Ophthalmol 2008; 146(5): 649‒55.

Cunha-Vaz JG. Natural history of diabetic retinopathy. Focus Diabetic Ret 1995; 2: 48‒55.

Lobo CL, Bernardes RC, Cunha-Vaz JG. Alterations of the blood-retinal barrier and retinal thickness in preclinical reti-nopathy in subjects with type 2 diabetes. Arch Ophthalmol 2000; 118(10): 1364–9.

Spaide RF. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133(1): 45–50.

Cennamo G, Romano MR, Nicoletti G, Velotti N, de Crecchio G. Optical coherence tomography angiography versus fluorescein angiography in the diagnosis of ischaemic diabetic maculopa-thy. Acta Ophthalmol 2017: 95: e36–e42.

Sim DA, Keane PA, Fung S, Karampelas M, Sadda SR, Fruttiger M, et al. Quantitative analysis of diabetic macular ischemia us-ing optical coherence tomography. Invest Ophthalmol Vis Sci 2014; 55(1): 417‒23.

Scarinci F, Jampol LM, Linsenmeier RA, Fawzi AA. Association of Diabetic Macular Nonperfusion with Outer Retinal Disrup-tion on Optical Coherence Tomography. JAMA Ophthalmol 2015; 133(9): 1036‒44.

Krawitz BD, Mo S, Geyman LS, Agemy S, Scripsema N, Garcia P, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vision Res 2017; 39: 177‒86.

Arend O, Wolf S, Harris A, Reim M. The relationship of macu-lar microcirculation to visual acuity in diabetic patients. Arch Ophthalmol 1995; 113(5): 610–14.

Sim DA, Keane PA, Zarranz-Ventura J, Fung S, Powner M, Platteau E, et al. The Effects of Macular Ischemia on Visual Acuity in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2013; 54(3): 2353–60.

Bandello F, Parodi MB, Lanzetta P, Loewenstein A, Massin P, Menchini F, et al. Diabetic macular edema. In: Coscas G, editor. Macular Edema: A Practical Approach. Basel: Karger; 2010. p. 73–110.

Yu DY, Cringle SJ, Yu PK, Su EN. Intraretinal oxygen distribu-tion and consumption during retinal artery occlusion and hy-peroxic ventilation in the rat. Invest Ophthalmol Vis Sci 2007; 48(5): 2290–6.

Das A, McGuire PG, Rangasamy S. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthal-mology 2015; 122(7): 1375–94.

Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, et al. Optical coherence tomography angiography in diabet-ic retinopathy: a prospective pilot study. Am J Ophthalmol 2015; 160(1): 35–44.

Pautler SE. Diabetic macular ischemia. In: Browning DJ, editor. Diabetic Retinopathy: Evidence-Based Management. New York, NY: Springer; 2010. p. 203‒25.

Fluorescein angiographic risk factors for progression of diabet-ic retinopathy. ETDRS report number 13. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98(5 Suppl): 834‒40.

Browning DJ, Stewart MW, Lee C. Diabetic macular edema: Ev-idence-based management. Indian J Ophthalmol 2018; 66(12): 1736‒50.

Chen E, Hsu J, Park CH. Acute visual acuity loss following in-travitreal bevacizumab for diabetic macular edema. Ophthal-mic Surg Lasers Imaging 2009; 40(1): 68‒70.

Pereira F, Godoy BR, Maia M, Regatieri CV. Microperimetry and OCT angiography evaluation of patients with ischemic di-abetic macular edema treated with monthly intravitreal bevacizumab: a pilot study. Int J Retin Vitr 2019; 5: 24.

Manousaridis K, Talks J. Macular ischaemia: a contraindication for anti-VEGF treatment in retinal vascular disease? Br J Ophthalmol 2012; 96(2): 179–84.

Published
2022/07/13
Section
Original Paper