Relationship between heat storage and parameters of thermotolerance and fatigue in exertional heat stress

  • Siniša T. Mašić Military Medical Academy, Institute of Hygiene, Belgrade, Serbia
  • Sonja Marjanović Sonja Marjanović University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Jelena M. Stojićević Military Medical Academy, Institute of Hygiene, Belgrade, Serbia
  • Vanja M. Jovanović Military Medical Academy, Institute of Occupational Medicine, Belgrade, Serbia
  • Mirjana V. Joksimović Military Medical Academy, Institute of Nuclear Medicine, Belgrade, Serbia
  • Danijela Ilić University of Priština, Faculty of Medicine, Kosovska Mitrovica, Serbia
Keywords: telesna temperatura;, stres uzrokovan toplotom, poremećaji;, hormoni;, kadar, vojni;, napor, fizički.

Abstract


Uvod/Cilj. Procena rizika od nastanka zamora i nekog oblika toplotne bolesti je od velikog značaja za vojnu službu. Cilj ovog istraživanja bio je da se utvrdi povezanost između stepena akumulacije toplote i različitih psihofizioloških parametara toplotnog stresa, kao i mogućih perifernih markera zamora u populaciji vojnika izloženih toplotnom stresu kombinovanim sa fizičkim naporom. Metode. Petnaest mladih, zdravih, utreniranih i neaklimatizovanih muškaraca podvrgnuto je testu toplotnog stresa (TTS) tokom fizičke aktivnosti submaksimalnog opterećenja u uslovima povišene temperature spoljne sredine (29 °C) u klimatskoj komori. Na svakih 10 min registrovane su ili izračunavane vrednosti sledećih parametara termotolerancije: unutrašnje (timpanične) temperature (Tu), srednje temperature kože (Tsk), temperature tela (Tt), frekvence srčanog rada (FSR), akumulacije toplote (AT), indeksa fiziološkog napora (IFN), kao i perifernih markera zamora [koncentracije amonijaka, uree u krvi (BUN), laktat dehidrogenaze (LDH)  kortizola i prolaktina] i subjektivnih parametara – osećaja toplote (OT) i stepena napora (SN). Rezultati. Vreme tolerancije variralo je između 45 i 75 min (srednja vrednost 63 ± 7,7 min). Prosečne vrednosti Tu, Tt i FSR konstantno su rasle tokom TTS, dok je Tsk dostigla plato nakon prvih 10 min. Vrednosti svih ispitivanih perifernih markera zamora bile su značajno veće nakon TTS u odnosu na vrednosti pre testa (amonijak 31,47 ± 7,29 vs. 11,8 ± 1,11 µmol/L, BUN 5,92 ± 0,73 vs. 4,69 ± 0,74 mmol/L, LDH 187,27 ± 28,49 vs. 152,73 ± 23,39 U/L, kortizol 743,43 ± 206,19 vs. 558,79 ± 113,34 mmol/L i prolaktin 418,08 ± 157,14 vs. 138,79 ± 92,83 μIU/mL). Zaključak. Rezultati su ukazali na povezanost između stepena akumulacije toplote i Tu, FSR, OT i SN, ali takođe i IFN. Koncentracije kortizola i, naročito, prolaktina pokazale su značajnu povezanost sa parametrima termotolerancije.

References

1.      Cordeiro LMS, Rabelo PCR, Moraes MM, Teixeira-Coelho F, Combra CC, Waner SP, et al. Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Braz J Med Biol Res 2017; 50(12): e6432.

2.      Wright HE, Selkirk GA, Rhind SG, McLellan TM. Peripheral markers of central fatigue in trained and untrained during uncompensable heat stress. Eur J Appl Physiol 2012; 112(3): 1047‒57.

3.      Kaltsatou A, Notley SR, Kenny GP. Effects of exercise-heat stress on circulating stress hormones and interleukin-6. Temperature (Austin) 2020; 7(4): 389‒93.

4.      Havenith G, Fiala D. Thermal indices and thermophysiological modeling for heat stress. Compr Physiol 2016; 6(1): 255‒302.

5.      Tikuisis P, McLellan TM, Selkirk G. Perceptual versus physiological heat strain during exercise-heat stress. Med Sci Sport Exerc 2002; 34(9): 1454‒61.

6.      Jovanovic DB, Karkalic RM, Tomic LjI, Velickovic ZM, Radakovic SS. Efficacy of novel phase change material for microclimate body cooling. Thermal Sci 2014; 18(2):657-65.

7.      Radakovic SS, Maric J, Surbatovic M, Radjen S, Stefanova E, Stankovic N, et al. Effects of acclimation on cognitive performance in soldiers during exertional heat stress. Mil Med 2007; 172(2): 133‒6.

8.      Gagge AP, Stolwijk JA, Saltin B. Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environ Res 1969; 2(3): 209‒29.

9.      Borg GA. Psychophysical bases of perceived exertion. Med Sci Sport Exerc 1982; 14(5): 377‒81.

10.   Gagge AP, Gonzales RR. Mechanisms of heat exchange. Biophysics and physiology. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology. Environmental physiology. Section 4. New York: Oxford University Press; 1996. p. 45‒84.

11.   Havenith G, Luttikholt VG, Vrijkotte TG. The relative influence of body characteristics on humid heat stress response. Eur J Appl Physiol Occup Physiol 1995; 70(3): 270‒9.

12.   Davey S, Downie V, Griggs K, Havenith G. The physiological strain index does not reliably identify individuals at risk of reaching a thermal tolerance limit. Eur J Appl Physiol 2021; 121(6): 1701‒13.

13.   Donnan K, Williams EL, Morris JL, Stanger N. The effects of exercise at different temperatures on cognitive function: A systematic review. Psychol Sport Exerc 2021; 54: 101908.

14.   Racinais S, Alonso JM, Coutts AJ, Flouris AD, Girard O, Gonzalez-Alonso J, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports 2015; 25(Suppl 1): 6‒19.

15.   Malgoyrea A, Siracusa J, Tardo-Dinoa PE, Garcia-Vicencioa S, Koulmanna N, Charlot K. A basal heat stress test to detect military operational readiness after a 14-day operational (heat acclimatization period. Temperature (Austin) 2020; 7(3): 277‒89.

16.   Zhou B, Ding L, Chen B, Shi H, Ao Y, Xu R, et al. Physiological Characteristics and Operational Performance of Pilots in the High Temperature and Humidity Fighter Cockpit Environments. Sensors 2021; 21: 5798.

17.   Cuddy JS, Buller M, Hailes WS, Ruby BC.  Skin Temperature and Heart Rate Can Be Used to Estimate Physiological Strain During Exercise in the Heat in a Cohort of Fit and Unfit Males. Mil Med 2013; 178(7): e841‒7.

18.   Gonzales-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (1985) 1999; 86(3): 1032‒9.

19.   Rodrigues LOC, Oliveira A, Lima NRV, Machado-Moreira CA. Heat storage and acute fatigue in rats. Braz J Med Biol Res 2003; 36(1): 131‒5.

20.   Kakitsuba N, Mekjavic I. Determining the rate of body heat storage by incorporating body composition. Aviat Space Environ Med 1987; 58(4): 301‒7.

21.   Tucker R, Marle T, Lambert EV, Noakes TD. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol 2006; 574(Pt 3): 905‒15.

22.   Zhang Y, Zhao R. Overall thermal sensation, acceptability and comfort. Buil Environ 2008; 43(1): 44‒50.

23.   Schweiker M, Fuchs X, Becker S, Shukuya M, Dovjak M, Hawighorst M, et al. Challenging the assumptions for thermal sensation scales. Build Res Inform 2017; 45(5): 572‒89.

24.   Manferdelli G, Freitag N, Doma K, Hackney AC, Predel HG, Bloch W, et al. Acute Hormonal Responses to High‐Intensity Interval Training in Hyperoxia. J Hum Kinet 2020; 73: 125‒34.

25.   Rojas Vega S, Hollmann W, Strüder HK. Influences of exercise and training on the circulating concentration of prolactin in humans. J Neuroendocrinol 2012; 24(3): 395‒402.

26.   Bridge MW, Weller AS, Rayson M, Jones DA. Ambient temperature and the pituitary hormone response to exercise in humans. Exp Physio 2003; 88(5): 627‒35.

27.   Burk A, Timpmann S, Kreegipuu K, Tamm M, Unt E, Oopik V. Effects of heat acclimation on endurance capacity and prolactin response to exercise in the heat. Eur J Appl Physiol 2012; 112(12): 4091‒101.

Published
2022/12/23
Section
Original Paper