Anti-inflammatory properties of an A3 adenosine receptor agonist, piclidenoson, in a model of human peripheral blood mononuclear cell culture
Abstract
Background/Aim. Piclidenoson (CF101, IB-MECA), a selective agonist of the A3 adenosine receptor (A3AR), is used in clinical trials for the treatment of psoriasis. Emerging data from in vitro and in vivo studies suggest that piclidenoson possesses anti-inflammatory and immunomodulatory properties, but its action on human peripheral blood mononuclear cells (PBMCs) remains unknown. The aim of this study was to examine the anti-inflammatory effects of piclidenoson in a model of phytohaemagglutinin (PHA)-stimulated human PBMCs culture. Methods. Human PBMCs were isolated from the venous blood of healthy donors (n = 4) and treated with different concentrations of piclidenoson. Flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test were used to determine cell viability, while the MTT method and the carboxyfluorescein succinimidyl ester (CFSE) staining method were used to analyze the effect of piclidenoson on cell proliferation. Levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, IL-23, IL-36, IL-5, interferon (IFN)‐γ, IL-17, and IL-10 were measured using a specific sandwich enzyme-linked immunosorbent assay (ELISA). Results. The results of cytotoxicity tests showed that the highest applied concentration of piclidenoson (1,500 nM) reduced the metabolic activity of PBMCs (p < 0.05) and increased the percentage of late apoptotic (p < 0.05) and necrotic cells (p < 0.01). Non-toxic concentrations (250, 500, and 1,000 nM) decreased the proliferation of PBMCs (p < 0.05) compared to the control cells. These concentrations also decreased the production of TNF-α (p < 0.001). Piclidenoson at concentrations of 250 and 1,000 nM reduced the production of IL-23 (p < 0.05) while the concentrations of 500 and 1,000 nM reduced the production of IL-36 (p < 0.05). Piclidenoson at 1,000 nM increased IL-1β production, while other concentrations decreased its production (p < 0.01). The highest concentration (1,000 nM) inhibited the production of IL-5 (p < 0.05) and IFN-γ (p < 0.01) while all applied concentrations inhibited the production of IL-17 (p < 0.001). Furthermore, piclidenoson increased the production of IL-10 in all applied concentrations (p < 0.01). Conclusion. At non-toxic concentrations, piclidenoson exerts anti-inflammatory properties associated with the inhibition of proliferation and modulation of cytokine production in PHA-stimulated PBMCs culture.
References
Varani K, Maniero S, Vincenzi F, Targa M, Stefanelli A, Manis-calco P, et al. A₃ receptors are overexpressed in pleura from pa-tients with mesothelioma and reduce cell growth via Akt/nuclear factor-κB pathway. Am J Respir Crit Care Med 2011; 183(4): 522–30.
Gessi S, Cattabriga E, Avitabile A, Gafa' R, Lanza G, Cavazzini L, et al. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res 2004; 10(17): 5895–901.
Panjehpour M, Hemati S, Forghani MA. Expression of A1 and A3 adenosine receptors in human breast tumors. Tumori 2012; 98(1): 137–41.
Mazziotta C, Rotondo JC, Lanzillotti C, Campione G, Martini F, Tognon M. Cancer biology and molecular genetics of A3 adeno-sine receptor. Oncogene 2022; 41(3): 301–8.
Mousavi S, Panjehpour M, Izadpanahi MH, Aghaei M. Expression of adenosine receptor subclasses in malignant and adjacent normal human prostate tissues. Prostate 2015; 75(7): 735–47.
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 2008; 117(1): 123–40.
Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, et al. The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 2004; 10(13): 4472–9.
Bi J, Zheng C, Zheng X. Increased expression of adenosine A3 receptor in tumor-infiltrating natural killer cells. Cell Mol Immunol 2021; 18(2): 496–7.
Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacolog-ical and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 2012; 17(7–8): 359–66.
Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, et al. Namodenoson in Advanced Hepatocellular Carcinoma and Child–Pugh B Cirrhosis: Randomized Place-bo-Controlled Clinical Trial. Cancers (Basel) 2021; 13(2): 187.
Coppi E, Cherchi F, Venturini M, Lucarini E, Corradetti R, Di Cesare Mannelli L, et al. Therapeutic Potential of Highly Selec-tive A3 Adenosine Receptor Ligands in the Central and Pe-ripheral Nervous System. Molecules 2022; 27(6): 1890.
Safadi R, Braun M, Francis A, Milgrom Y, Massarwa M, Ha-kimian D, et al. Randomised clinical trial: A phase 2 double-blind study of namodenoson in non-alcoholic fatty liver dis-ease and steatohepatitis. Aliment Pharmacol Ther 2021; 54(11–12): 1405–15.
Itzhak I, Bareket-Samish A, Fishman P. Namodenoson Inhibits the Growth of Pancreatic Carcinoma via Deregulation of the Wnt/β-catenin, NF-κB, and RAS Signaling Pathways. Bio-molecules 2023; 13(11): 1584.
Bar-Yehuda S, Rath-Wolfson L, Del Valle L, Ochaion A, Cohen S, Patoka R, et al. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum 2009; 60(10): 3061–71.
Rath-Wolfson L, Bar-Yehuda S, Madi L, Ochaion A, Cohen S, Zabutti A, et al. IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthri-tis. Clin Exp Rheumatol 2006; 24(4): 400–6.
Mabley J, Soriano F, Pacher P, Haskó G, Marton A, Wallace R, et al. The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide, is protective in two murine models of colitis. Eur J Pharmacol 2003; 466(3): 323–9.
David M, Akerman L, Ziv M, Kadurina M, Gospodinov D, Pavlot-sky F, et al. Treatment of plaque‐type psoriasis with oral CF101: data from an exploratory randomized phase 2 clinical trial. J Eur Acad Dermatol Venereol 2012; 26(3): 361–7.
David M, Gospodinov DK, Gheorghe N, Mateev GS, Rusinova MV, Hristakieva E, et al. Treatment of plaque-type psoriasis with oral CF101: data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol 2016; 15(8): 931–8.
Fishman P. Drugs Targeting the A3 Adenosine Receptor: Hu-man Clinical Study Data. Molecules 2022; 27(12): 3680.
Papp KA, Beyska-Rizova S, Gantcheva ML, Slavcheva Simeonova E, Brezoev P, Celic M, et al. Efficacy and safety of piclidenoson in plaque psoriasis: Results from a randomized phase 3 clinical trial (COMFORT-1). J Eur Acad Dermatol Venereol 2024; 38(6): 1112–20.
Haskó G, Németh ZH, Vizi ES, Salzman AL, Szabó C. An ago-nist of adenosine A3 receptors decreases interleukin-12 and interferon-gamma production and prevents lethality in endo-toxemic mice. Eur J Pharmacol 1998; 358(3): 261–8.
Fishman P, Bar-Yehuda S, Madi L, Rath-Wolfson L, Ochaion A, Cohen S, et al. The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 2006; 8(1): R33.
Thiele A, Kronstein R, Wetzel A, Gerth A, Nieber K, Hauschildt S. Regulation of adenosine receptor subtypes during cultivation of human monocytes: role of receptors in preventing lipopoly-saccharide-triggered respiratory burst. Infect Immun 2004; 72(3): 1349–57.
Madi L, Cohen S, Ochayin A, Bar-Yehuda S, Barer F, Fishman P. Overexpression of A3 adenosine receptor in peripheral blood mononuclear cells in rheumatoid arthritis: involvement of nu-clear factor-kappaB in mediating receptor level. J Rheumatol 2007; 34(1): 20–6.
Drakul M, Mališ V, Rakočević S, Kozić S, Popović D, Mandić A, et al. Cytotoxicity and anti-inflammatory properties of a GLP-1 receptor agonist in a model of human peripheral blood mono-nuclear cell culture. Biomedicinska istraživanja 2024; 15(1): 1–11.
Drakul M, Tomić S, Bekić M, Mihajlović D, Vasiljević M, Rakočević S, et al. Sitagliptin Induces Tolerogenic Human Den-dritic Cells. Int J Mol Sci 2023; 24(23): 16829.
Pourahmad J, Salimi A. Isolated Human Peripheral Blood Mononuclear Cell (PBMC), a Cost Effective Tool for Predict-ing Immunosuppressive Effects of Drugs and Xenobiotics. Iran J Pharm Res 2015; 14(4): 979.
Chilson OP, Boylston AW, Crumpton MJ. Phaseolus vulgaris phy-tohaemagglutinin (PHA) binds to the human T lymphocyte antigen receptor. EMBO J 1984; 3(13): 3239–45.
Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, et al. Expression of A3 adenosine receptors in human lym-phocytes: up-regulation in T cell activation. Mol Pharmacol 2004; 65(3): 711–9.
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Aghaza-deh Tabrizi M, et al. A3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38(4): 1031–72.
Ochaion A, Bar-Yehuda S, Cohen S, Barer F, Patoka R, Amital H, et al. The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn's disease. Cell Immunol 2009; 258(2): 115−22.
Ohana G, Bar-Yehuda S, Barer F, Fishman P. Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Physiol 2001; 186(1): 19−23.
Yao Y, Sei Y, Abbracchio MP, Jiang JL, Kim YC, Jacobson KA. Adenosine A3 receptor agonists protect HL-60 and U-937 cells from apoptosis induced by A3 antagonists. Biochem Bo-phys Res Commun 1997; 232(2): 317−22.
Stambaugh K, Jacobson KA, Jiang JL, Liang BT. A novel cardio-protective function of adenosine A1 and A3 receptors during prolonged simulated ischemia. Am J Physiol 1997; 273(1 Pt 2): H501−5.
Abbracchio MP, Brambilla R, Ceruti S, Kim HO, von Lubitz DK, Jacobson KA, et al. G protein-dependent activation of phos-pholipase C by adenosine A3 receptors in rat brain. Mol Pharmacol 1995; 48(6): 1038−45.
Kohno Y, Sei Y, Koshiba M, Kim HO, Jacobson KA. Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A(3) receptor agonists. Biochem Biophys Res Commun 1996; 219(3): 904−10.
Sei Y, Lubitz DK, Abbracchio MP, Ji XD, Jacobson KA. Adeno-sine A3 receptor agonist‐induced neurotoxicity in rat cerebel-lar granule neurons. Drug Dev Res 1997; 40(3): 267−73.
Jeffe F, Stegmann KA, Broelsch F, Manns MP, Cornberg M, Wedemeyer H. Adenosine and IFN-{alpha} synergistically in-crease IFN-gamma production of human NK cells. J Leukoc Biol 2009; 85(3): 452−61.
Schiedel AC, Lacher SK, Linnemann C, Knolle PA, Müller CE. Antiproliferative effects of selective adenosine receptor ago-nists and antagonists on human lymphocytes: evidence for re-ceptor-independent mechanisms. Purinergic Signal 2013; 9(3): 351−65.
Cohen S, Barer F, Itzhak I, Silverman MH, Fishman P. Inhibition of IL-17 and IL-23 in Human Keratinocytes by the A3 Adeno-sine Receptor Agonist Piclidenoson. J Immunol Res 2018; 2018: 2310970.
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21(21): 8011.
Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mecha-nisms of immune suppression by interleukin-10 and trans-forming growth factor-beta: the role of T regulatory cells. Immunology 2006; 117(4): 433−42.
Varani K, Padovan M, Vincenzi F, Targa M, Trotta F, Govoni M, et al. A2A and A3 adenosine receptor expression in rheuma-toid arthritis: upregulation, inverse correlation with disease ac-tivity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 2011; 13(6): R197.
Lee HS, Chung HJ, Lee HW, Jeong LS, Lee SK. Suppression of inflammation response by a novel A₃ adenosine receptor agonist thio-Cl-IB-MECA through inhibition of Akt and NF-κB signaling. Immunobiology 2011; 216(9): 997−1003.
Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, et al. Ac-tivation of adenosine A3 receptor suppresses lipopolysaccha-ride-induced TNF-alpha production through inhibition of PI 3-kinase/Akt and NF-kappaB activation in murine BV2 mi-croglial cells. Neurosci Lett 2006; 396(1): 1−6. Erratum in: Neurosci Lett 2019; 712: 134486.
Sipka S, Kovács I, Szántó S, Szegedi G, Brugós L, Bruckner G, et al. Adenosine inhibits the release of interleukin-1beta in acti-vated human peripheral mononuclear cells. Cytokine 2005; 31(4): 258−63.
Garrido W, Jara C, Torres A, Suarez R, Cappelli C, Oyarzún C, et al. Blockade of the Adenosine A3 Receptor Attenuates Caspase 1 Activation in Renal Tubule Epithelial Cells and Decreases Interleukins IL-1β and IL-18 in Diabetic Rats. Int J Mol Sci 2019; 20(18): 4531.
Ouyang X, Ghani A, Malik A, Wilder T, Colegio OR, Flavell RA, et al. Adenosine is required for sustained inflammasome acti-vation via the A₂A receptor and the HIF-1α pathway. Nat Commun 2013; 4: 2909.
Bianchi E, Vecellio M, Rogge L. Editorial: Role of the IL-23/IL-17 Pathway in Chronic Immune-Mediated Inflammato-ry Diseases: Mechanisms and Targeted Therapies. Front Im-munol 2021; 12: 770275.
Ruiz de Morales JMG, Puig L, Daudén E, Cañete JD, Pablos JL, Martín AO, et al. Critical role of interleukin (IL)-17 in in-flammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun Rev 2020; 19(1): 102429.
Bernardini N, Skroza N, Tolino E, Mambrin A, Anzalone A, Bal-duzzi V, et al. IL-17 and its role in inflammatory, autoim-mune, and oncological skin diseases: state of art. Int J Derma-tol 2020; 59(4): 406−11.
Chan TC, Hawkes JE, Krueger JG. Interleukin 23 in the skin: role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Ther Adv Chronic Dis 2018; 9(5): 111−9.
Gresnigt MS, van de Veerdonk FL. Biology of IL-36 cytokines and their role in disease. Semin Immunol 2013; 25(6): 458−65.
Sachen KL, Arnold Greving CN, Towne JE. Role of IL-36 cyto-kines in psoriasis and other inflammatory skin conditions. Cy-tokine 2022; 156: 155897.
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regula-tion in inflammation and autoimmune disease. Crit Rev Im-munol 2012; 32(1): 23−63.
Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, et al. Regula-tion of IL-10 and IL-12 production and function in macro-phages and dendritic cells. F1000Res 2015; 4: F1000 Faculty Rev − 1465.
Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol 2008; 180(9): 5771−7.
Durante M, Squillace S, Lauro F, Giancotti LA, Coppi E, Cherchi F, et al. Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10. J Clin Invest 2021; 131(7): e139299.
Németh ZH, Lutz CS, Csóka B, Deitch EA, Leibovich SJ, Gause WC, et al. Adenosine augments IL-10 production by macro-phages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol 2005; 175(12): 8260−70.
Lyakh L, Trinchieri G, Provezza L, Carra G, Gerosa F. Regula-tion of interleukin-12/interleukin-23 production and the T-helper 17 response in humans. Immunol Rev 2008; 226: 112−31.