Efficacy of nanocrystalline bone substitute biphasic calcium phosphate/poly-DL-lactide-co-glycolide for periodontal intrabony defects filling

  • Momir Z Stevanović Department of Periodontology, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
  • Vladimir M Biočanin Department of Dentistry, Faculty of Pharmacy and Health, University of Travnik, Travnik, Bosnia and Herzegovina
  • Milica Nedić Department of Periodontology, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia Clinic of Periodontology and Oral Medicine, Faculty of Dentistry, Pančevo, Serbia
  • Nenad L Ignjatovic Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
Keywords: bone resorption, bone substitutes, oral surgical procedures, biocompatible materials, nanoparticles, treatment outcome,

Abstract


Background/Aim. Different bone substitutes have been used for filling and reparation of intrabony defects. The aim of this study was to compare nanocrystalline material, biphasic calcium phosphate poly-DL-lactide-co-glycolide (BCP/PLGA) with deproteinised bovine bone (DPBB) and β-tricalcium phosphate (β-TCP) in the treatment of periodontal intrabony defects. Methods. The study included 24 patients with bilateral, intrabony defects in the region of the upper first and second premolar, and the upper first molar. On one side of the mouth, DPBB (BioOss®) was used to fill defects in upper premolars while β-TCP (RTR®) was used for the upper first molar. BCP/PLGA was applied into periodontal defects of the upper premolars and upper first molar of the opposite side. Results. The comparison of the BCP/PLGA and the β-TCP group, 6 months following filling of defects, showed a statistically significant reduction of periodontal pocket depth (PPD) and the position of the cement-enamel junction (CEJ) in the group with BCP/PLGA, when compared to the β-TCP group. The reduction of PPD and CEJ was similar in the groups treated with BCP/PLGA and DPBB. Conclusion. Significant reductions of PPD and CEJ were registered in the group with BCP/PLGA when compared to the β-TCP group.

.

References

Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontology 2000; 19(1): 74−86.

Hanes PJ. Bone replacement grafts for the treatment of perio-dontal intrabony defects. Oral Maxillofac Surg Clin North Am 2007; 19(4): 499−512.

Baldini N, de Sanctis M, Ferrari M. Deproteinised bovine bone in periodontal and implant surgery. Dent Mater 2007; 27(1): 61−70.

Hammerle CH, Chiantella GC, Karring T, Lang NP. The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clin Oral Impl Res 1998; 9(3): 151−62.

Tapety FI, Amizuka N, Uoshima K, Nomura S, Maeda T. A histo-logical evaluation of the involvement of Bio-Oss in osteoblas-tic differentiation and matrix synthesis. Clin Oral Implants Res 2004; 15(3): 315−24.

Richardson CR, Mellonig JT, Brunsvold MA, McDonnell HT, Cochran DL. Clinical evaluation of Bio-Oss: a bovine-derived xenograft for the treatment of periodontal osseous defects in humans. J Clin Periodontol 1999; 26(7): 421−8.

Scabbia A, Trombelli L. A comparative study on the use of a HA/collagen/chondroitin sulphate biomaterial (Biostite) and a bovine-derived HA xenograft (Bio-Oss) in the treatment of deep intra-osseous defects. J Clin Periodontol 2004; 31(5): 348−55.

Neamat A, Gawish A, Gamal-Eldeen AM. beta-Tricalcium phos-phate promotes cell proliferation, osteogenesis and bone regeneration in intrabony defects in dogs. Arch Oral Biol 2009; 54(12): 1083−90.

Jensen SS, Broggini N, Hjørting-Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2006; 17(3): 237−43.

Ignjatovic N, Ajdukovic Z, Uskokovic D. New biocomposite [bi-phasic calcium phosphate/ poly-DL-lactide-co-glycolide/biostimulative agent] filler for reconstruction of bone tissue changed by osteoporosis. J Mater Sci Mater Med 2005; 16(7): 621−6.

Zhang P, Hong Z, Yu T, Chen X, Jing X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Biomaterials 2009; 30(1): 58−70.

Ignjatović NL, Liu CZ, Czernuszka JT, Uskoković DP. Micro- and nano-injectable composite biomaterials containing calcium phosphate coated with poly(DL-lactide-co-glycolide). Acta Biomater 2007; 3(6): 927−35.

Ignjatović N, Suljovrujić E, Budinski-Simendić J, Krakovsky I, Us-koković D. Evaluation of Hot-Pressed Hydroxyapatite/Poly-L-lactide Composite Biomaterial Characteristics. J Biomed Mater Res B Appl Biomater 2004; 71(2): 284−94.

Ignjatovic N, Uskokovic D. Biodegradable composites based on nano-crystalline calcium phosphate and bioresorbable poly-mers. Advanced Appl Cer 2008; 107(3): 142−7.

Ignjatovic N, Uskokovic V, Ajdukovic Z, Uskokovic D. Multi-functional hydroxyapatite and poly (D, L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Mater Sci Eng C Mater Biol Appl 2013; 33(2): 943−50.

Ignjatović N, Ninkov P, Kojić V, Bokurov M, Srdić V, Krnojelac D, et al. Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-dl-lactide-co-glycolide biocomposites and different phosphate materials. Microsc Res Tech 2006; 69(12): 976−82.

Unger RE, Huang Q, Peters K, Protzer D, Paul D, Kirkpatrick CJ. Growth of human cells on polyethersulfone (PES) hollow fi-ber membranes. Biomaterials 2005; 26(14): 1877−84.

Ignjatovic N, Nastovic A, Latinovic V, Onjia A, Miljkovic M, Kon-stantinovic V. Preparation and properties of polymeric and composite bioresorbable barrier membranes. Mater Sci Forum 2004; 453−4: 537−42. (Serbian)

Vonarbourg A, Passirani C, Saulnier P, Benoit J. Parameters influ-encing the stealthiness of colloidal drug delivery systems. Bio-materials 2006; 27(24): 4356−73.

Saini N, Sikri P, Gupta H. Evaluation of the relative efficacy of autologous platelet-rich plasma in combination with β-tricalcium phosphate alloplast versus an alloplast alone in the treatment of human periodontal infrabony defects: a clinical and radiological study. Indian J Dent Res 2011; 22(1): 107−15.

Merten HA, Wiltfang J, Grohmann U, Hoenig JF. Intraindividual comparative animal study of alpha- and beta-tricalcium phosphate degradation in conjunction with simultaneous in-sertion of dental implants. J Craniofac Surg 2001; 12(1): 59−68.

Kim SS, Kim BS. Comparison of osteogenic potential between apatite-coated poly(lactide-co-glycolide)/hydroxyapatite par-ticulates and Bio-Oss®. Dent Mater J 2008; 27(3): 368−75.

Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized con-trolled multicenter clinical trial. Clin Oral Implants Res 2008; 19(8): 796−803.

Sartori S, Silvestri M, Forni F, Icaro Comaglia A, Tesei P, Cattaneo V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with his-tomorphometric evaluation. Clin Oral Implants Res 2003; 14(3): 369−72.

Schlegel AK, Donath K. BIO-OSS - a resorbable bone substitute. J Long Term Eff Med Implants 1998; 8(3−4): 201−9.

Thaller SR, Hoyt J, Dart A, Borjeson K, Tesluk H. Repair of ex-perimental calvarial defects with Bio-Oss particles and collagen sponges in a rabbit model. J Craniofac Surg 1994; 5(4): 242−6.

Ellegaard B, Löe H. New attachment of periodontal tissues after treatment of intrabony lesions. J Periodontol 1971; 42(10): 648−52.

Published
2015/11/02
Section
Original Paper