Energetske performanse infiltriranih i elevacionih zemunica na području grada Kragujevca – Numeričko istraživanje

Ključne reči: Zemunica, Energetska efikasnost, EnergyPlus, Google SketchUp, Parametri lokacije

Sažetak


U ovom radu istražen je energetski potencijal različitih tipova savremenih zemunica, tokom sedmomesečnog vremenskog perioda (od 1. oktobra do 1. maja), u cilјu dostizanja održivog razvoja. Predmet istraživanja je jednospratna stambena zgrada (ukupne neto površine 102,5 m2), namenjena boravku četvoročlane porodice, locirana na području grada Kragujevca (centralna Srbija). Sistem grejanja formiraju toplotna pumpa tipa zemlјa-voda, geotermalne vertikalne sonde, podni panelni grejači i dve cirkulacione pumpe. Numeričkom analizom (koristeći softver EnergyPlus) istražena su četiri tipa infiltriranih zemunica, kao i jedna elevaciona zemunica. Energetske performanse svih pomenutih zemunica upoređene su sa energetskim performansama klasične nadzemne zgrade. Sve zgrade su istih geometrijskih, građevinskih i termo-tehničkih performansi. Rezultati istraživanja pokazali su da se, u infiltriranim zemunicama godišnja, potrošnja finalne (električne) energije može redukovati za 2,53-21,64% (zavisno od broja spolјašnjih građevinskih elemenata u direktnom kontaktu sa zemlјištem). Savremena arhitektura ipak treba biti usmerena na razvoj elevacionih zemunica, jer se u njima godišnja potrošnja finalne (električne) energije za grejanje može redukovati preko 40%.

 

Reference

Abel, E. 1994. Low-energy buildings. Energy and Buildings, 21, 169-174, https://doi.org/10.1016/0378-7788(94)90032-9.

Akubue, J. 2021. Earth-sheltered housing; Design concepts for urban ground-scrapers. International Journal of Architecture, Arts and Applications, 7, 1-7, https://doi.org/10.11648/j.ijaaa.20210701.11.

Alkaff, S. A., Sim, S. C., Efzan, M. E. 2016. A review of underground building towards thermal energy efficiency and sustainable development. Renewable and Sustainable Energy Reviews, 60, 692-713, https://doi.org/10.1016/j.rser.2015.12.085.

Altan, H., Hajibandeh, M., Tabet Aoul, K. A., Deep, A. 2016. Passive design. ZEMCH: Toward the delivery of zero energy mass custom homes, -, 209-236, https://doi.org/10.1007/978-3-319-31967-4_8.

Anselm, A. J. 2012. Earth shelters; A review of energy conservation properties in earth-sheltered housing. Energy Conservation, 31, 125-48, http://dx.doi.org/10.5772/51873.

Bojić, M., Nikolić, N., Nikolić, D., Skerlić, J., Miletić, I. 2011. Toward a positive-net-energy residential building in Serbian conditions. Applied Energy, 887, 2407-2419, https://doi.org/10.1016/j.apenergy.2011.01.011.

Callejas, I. J. A., Durante, L. C., Guarda, E. L. A. D., Apolonio, R. M. 2020. Thermal performance of partially bermed earth-sheltered house: Measure for adapting to climate change in a tropical climate region. Proceedings (MDPI), 58, 1-13, https://doi.org/10.3390/wef-06919.

Cvetković, D., Nešović, A. 2021. Impact of heat source at radiant electric heating panel. Energy and Buildings, 239, 110843, https://doi.org/10.1016/j.enbuild.2021.110843.

EnergyPlus weather file, 2012.

Firląg, S. 2019. Cost-optimal plus energy building in a cold climate. Energies, 12, 3841, https://doi.org/10.3390/en12203841.

Hassan, H., Sumiyoshi, D. 2018. Earth-sheltered buildings in hot-arid climates: Design guidelines. Beni-Suef University Journal of Basic and Applied Sciences, 7, 397-406, https://doi.org/10.1016/j.bjbas.2017.05.005.

Ionescu, C., Baracu, T., Vlad, G. E., Necula, H., Badea, A. 2010. The historical evolution of the energy efficient buildings. Renewable and Sustainable Energy Reviews, 49, 243-253, http://dx.doi.org/10.1016/j.rser.2015.04.062.

Khaksar, A., Tabadkani, A., Shemirani, S. M. M., Hajirasouli, A., Banihashemi, S., Attia, S. 2022. Thermal comfort analysis of earth-sheltered buildings: The case of meymand village, Iran. Frontiers of Architectural Research, 11, 1214-1238, https://doi.org/10.1016/j.foar.2022.04.008.

Krstić, H., Bogdanović, V., Vasov, M., Bogdanović-Protić, I., Đorđević, S. S. 2018. Buried buildings as an example of architecture that strives to be energy efficient. Facta Universitatis, Series: Architecture and Civil Engineering, 15, 403-413, https://doi.org/10.2298/FUACE160921031K.

Labs, K. 1975. The Use of Earth Covered Buildings Through History. Alternatives in Ener Conservation: The Use of Earth Covered Builings, -, 7-15.

Lukić, N., Nešović, A., Grbović, F., Nikolić, N., Taranović, D. 2019. Location parameters and energy efficiency in buildings. 50th International Congress and Exhibition on Heating, Refrigeration and Air Conditioning, Belgrade, Serbia, 2019, December 4th-6th, pp. 357-364, ISBN: 978-86-81505-99-1.

Lukić, N., Nešović, A., Nikolić, N. 2020. Influence of exterior door opening on the heating consumption of a passive residential house. Energy Efficiency, 13, 1163-1176, https://doi.org/10.1007/s12053-020-09880-6.

Matić, D., Roset Calzada, J., Todorović, M. S. 2016. Renewable energy sources-integrated refurbishment approach for low-rise residential prefabricated building in Belgrade, Serbia. Indoor and Built Environment, 25, 1016-1023, https://doi.org/10.1177/1420326X16660355.

Milanović, A. 2016. Razvoj podzemnih stambenih objekata i njihova savremena primena u Srbiji. Doktorska disertacija. Novi Sad: Fakultet tehničkih nauka.

Milanović, A. R., Folić, N. K. 2017. Earth-sheltered housing buildings in the energy efficient structures context. Građevinski Materijali i Konstrukcije, 60, 47-60, https://doi.org/10.5937/grmk1703047R.

Milanović, A. R., Folić, N. K., Folić, R. 2018. Earth-sheltered house: a case study of Dobraca village house near Kragujevac, Serbia. Sustainability, 10, 3629, https://doi.org/10.3390/su10103629.

Nešović, A., Jurišević, N., Kowalik, R., Terzić, I. 2023. Potential of contemporary earth-sheltered buildings to achieve Plus Energy status in various European climates during the heating season. Building Simulation, https://doi.org/10.1007/s12273-023-161-x.

Νešović, Α., Šušteršič, V., Lukić, N., Nikolić, N., Terzić, I. 2019. Optimization of the free facade of the earth-sheltered houses in order to minimize the final energy consumption during the heating season. 14th International Conference on Accomplishments in Mechanical and Industrial Engineering (DEMI 2019), Banja Luka, B&H, RS, 2019, May 24th-25th, pp. 209-214, ISBN: 978-99938-39-85-9.

ODYSSEE-MURE, Serbia, Energy profile, Energy efficiency trends and policies, 2021, Available at: https://www.odyssee-mure.eu/publications/efficiency-trends-policies-profiles/serbia-country-profile-english.pdf [Accessed: 8 October 2023].

Ramanathan, G. 2021. Autonomous buildings. 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Coimbra, Portugal, 2021, November 17th-18th, pp. 246-247, ISBN: 978-1-4503-9114-6.

Roy, R. 2006. The complete book of underground houses, How to build a low-cost home. Gabriola Island, Canada: New Society Publishers.

Serbian Environmental Protection Agency, Danube Basin eSOTER soil database, 2015, Available at: https://esdac.jrc.ec.europa.eu/projects/esoter/Danube/Presentations/c%20-%20Serbia%20-%20Dragana%20Vidojevic%20-%20SOTER%20database%20Feb%202015.pdf

[Accessed: 15 July 2023].

Službeni glasnik Republike Srbije, 61/2011, Pravilnik o energetskoj efikasnosti zgrada.

Službeni glasnik Republike Srbije, 69/2012, 44/2018 - dr. zakon i 111/2022, Pravilnik o uslovima, sadržini i načinu izadavanja sertifikata o energetskim svojstvima zgrada.

Službeni glasnik Republike Srbije, 22/2015, Pravilnik o klasifikaciji objekata.

Službeni glasnik Republike Srbije, 12/2022, Pravilnik o bližim uslovima za raspodelu i korišćenje sredstava za primenu mera energetske efikasnosti.

Spasojević-Šantić, T., Stanojlović, D. 2016. Earthship – A new habitat on Earth for quality life. 1st International Conference on Quality of Life, Kragujevac, Serbia, 2016, June 09th-10th, pp. 123-126, ISBN: 978-86-6335-033-5.

Van Dronkelaar, C., Cóstola, D., Mangkuto, R. A., Hensen, J. L. 2014. Heating and cooling energy demand in underground buildings: Potential for saving in various climates and functions. Energy and Buildings, 71, 129-136, https://doi.org/10.1016/j.enbuild.2013.12.004.

Voss, K., Musall, E., Lichtmeß, M. 2011. From low-energy to net zero-energy buildings: status and perspectives. Journal of Green building, 6, 46-57, https://doi.org/10.3992/jgb.6.1.46.

Zhao, J. W., Peng, F. L., Wang, T. Q., Zhang, X. Y., Jiang, B. N. 2016. Advances in master planning of urban underground space (UUS) in China. Tunnelling and Underground Space Technology, 55, 290-307, https://doi.org/10.1016/j.tust.2015.11.011.

Objavljeno
2024/05/22
Broj časopisa
Rubrika
Naučni radovi