Inhibitors of tumor necrosis factor-α and mechanisms of their action

  • Biljana Bufan University of Belgrade - Faculty of Pharmacy, Department of Microbiology and Immunology
  • Ivan Jančić University of Belgrade - Faculty of Pharmacy, Department of Microbiology and Immunology
  • Zorica Stojić-Vukanić University of Belgrade - Faculty of Pharmacy, Department of Microbiology and Immunology
Keywords: TNF-α inhibitors; TNF-α neutralization; TNF receptors; transmembrane TNF-α

Abstract


Tumor necrosis factor (TNF)-α is a proinflammatory cytokine with a role in immunity to pathogens, as well as in the pathogenesis of several autoimmune/inflammatory diseases. Biological drugs targeting this cytokine and inhibiting its effects are designed. Until today, five TNF-α inhibitors are approved: infliximab, adalimumab, golimumab (monoclonal antibodies), certolizumab pegol (pegylated antigen-binding fragment of immunoglobulin), and etanercept [TNF receptor type 2-fragment crystallizable (Fc) of immunoglobulin fusion protein]. Their approved biosimilars are on the market, too. They are mainly used for the treatment of rheumatoid arthritis, inflammatory bowel disease, and psoriasis. Although TNF-α inhibitors are present in clinical practice for more than two decades and are established as an efficacious therapeutics, researchers are still occupied by revealing the complex mechanisms of their action. Namely, in addition to binding and neutralisation of soluble TNF-α, these drugs also bind/block transmembrane form of TNF-α (tmTNF-α), trigger diverse intracellular signals in tmTNF-α positive cells (a process named “reverse signalling”) or, if they have an Fc fragment, mediate killing of tmTNF-α-expressing cells by other immune cells or the complement system. Also, TNF-α inhibitors that contain Fc portion of the IgG antibody may affect Fc receptor-expressing cells and have an effector function quite independent of their TNF-α neutralisation capacity.

References

Lis K, Kuzawińska O, Bałkowiec-Iskra E. Tumor necrosis factor inhibitors - state of knowledge. Arch Med Sci. 2014;10(6):1175-85. doi: 10.5114/aoms.2014.47827

Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49-62. doi: 10.1038/nrrheum.2015.169

Mitoma H, Horiuchi T, Tsukamoto H, Ueda N. Molecular mechanisms of action of anti-TNF-α agents-comparison among therapeutic TNF-α antagonists. Cytokine. 2018;101:56-63. doi: 10.1016/j.cyto.2016.08.014

Billmeier U, Dieterich W, Neurath MF, Atreya R. Molecular mechanism of action of anti-tumor necrosis factor antibodies in inflammatory bowel diseases. World J Gastroenterol. 2016;22(42): 9300-13. doi: 10.3748/wjg.v22.i42.9300

Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1975;72:3666-70.

Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev. 2014;25(4):453-72. doi: 10.1016/j.cytogfr.2014.07.016

Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149-60. doi: 10.1002/path.2287

Chu WM. Tumor necrosis factor. Cancer Lett. 2013;328(2):222-5. doi: 10.1016/j.canlet.2012.10.014

Olesen CM, Coskun M, Peyrin-Biroulet L, Nielsen OH. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases. Pharmacol Ther. 2016;159:110-9. doi: 10.1016/j.pharmthera.2016.01.001

Tang P, Hung M-C, Klostergaard J. Human pro-tumor necrosis factor is a homotrimer. Biochemistry. 1996;35(25):8216-25.

Grell M, Wajant H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci USA. 1998;95(2):570-5.

Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: past, present and future. Int Immunol. 2015;27(1):55-62. doi: 10.1093/intimm/dxu102

Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford). 2010;49(7):1215-28. doi: 10.1093/rheumatology/keq031

Varfolomeev EE, Ashkenazi A. Tumor necrosis factor: an apoptosis JuNKie? Cell. 2004;116(4):491-7.

Mark KS, Trickler WJ, Miller DW. Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Therap. 2001;297(3):1051-8.

Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA Jr. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA. 1986;83(12):4533-7.

Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994.45:491-503. doi:10.1146/annurev.med.45.1.491

Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14:397-440.

Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M. Inhibitory effect of TNFα antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 1989;2(8657):244-7.

Butler DM, Maini RN, Feldmann M, Brennan FM. Modulation of proinflammatory cytokine release in rheumatoid synovial membrane cell cultures. Comparison of monoclonal anti TNFα antibody with the interleukin-1 receptor antagonist. Eur Cytokine Netw 1995;6(4):225-30.

Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci USA 1992;89(16):7375-9.

Piguet PF, Grau GE, Vesin C, Loetscher H, Gentz R, Lesslauer W. Evolution of collagen arthritis in mice is arrested by treatment with anti-tumour necrosis factor (TNF) antibody or a recombinant soluble TNF receptor. Immunology. 1992;77(4):510-4.

Koch AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol. 1994;152(8):4149-56.

Francois RJ, Neure L, Sieper J, Braun J. Immunohistological examination of open sacroiliac biopsies of patients with ankylosing spondylitis: detection of tumour necrosis factor alpha in two patients with early disease and transforming growth factor beta in three more advanced cases. Ann Rheumat Dis.2006;65(6):713-20.

Lange U, Teichmann J, Stracke H. Correlation between plasma TNFα, IGF-1, biochemical markers of bone metabolism, markers of inflammation/disease activity, and clinical manifestations in ankylosing spondylitis. Eur J Med Res. 2000;5(12):507-11.

Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573-621. doi: 10.1146/annurev-immunol-030409-101225

Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P, et al. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology.1994;106(6):1455-66.

Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993;34(12):1705-9.

Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gutassociated immunopathologies. Immunity. 1999;10(3):387-98.

Ettehadi P, Greaves MW, Wallach D, Aderka D, Camp RD. Elevated tumour necrosis factor-alpha (TNFα) biological activity in psoriatic skin lesions. Clin Exp Immunol.1994;96(1):146-51.

Karampetsou MP, Liossis SN, Sfikakis PP. TNF-α antagonists beyond approved indications: stories of success and prospects for the future. QJM. 2010;103:917-28.

Haraoui B, Bykerk V. Etanercept in the treatment of rheumatoid arthritis. Ther Clin Risk Manag. 2007;3(1):99-105.

Scott LJ. Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs. 2014;74:1379-1410. doi: 10.1007/s40265-014-0258-9

Lim H, Lee SH, Lee HT, Lee JU, Son JY, Shin W, Heo YS. Structural biology of the TNFα antagonists used in the treatment of rheumatoid arthritis. Int J Mol Sci. 2018;19(3). pii: E768. doi: 10.3390/ijms19030768

Mease PJ. Adalimumab in the treatment of arthritis. Ther Clin Risk Manag. 2007;3(1):133-48.

Rossini M, De Vita S, Ferri C, Govoni M, Paolazzi G, Salvarani C et al. Golimumab: a novel anti-tumor necrosis factor. Biol Ther. 2013;3:83-107. doi: 10.1007/s13554-013-0012-y

Oikonomopoulos A, van Deen WK, Hommes DW. Anti-TNF antibodies in inflammatory bowel disease: do we finally know how it works? Curr Drug Targets. 2013;14:1421-32.

Kaymakcalan Z, Sakorafas P, Bose S, Scesney S, Xiong L, Hanzatian DK et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol. 2009;131(2):308-16. doi: 10.1016/j.clim.2009.01.002

Mitoma H, Horiuchi T, Tsukamoto H, Tamimoto Y, Kimoto Y, Uchino A et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum. 2008;58(5):1248-57.

Scallon B, Cai A, Solowski N, Rosenberg A, Song XY, Shealy D et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002;301(2):418-26.

Shealy DJ, Cai A, Staquet K, Baker A, Lacy ER, Johns L et al. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha. mAbs. 2010;2(4):428-39.

Ueda N, Tsukamoto H, Mitoma H, Ayano M, Tanaka A, Ohta S et al. The cytotoxic effects of certolizumab pegol and golimumab mediated by transmembrane tumor necrosis factor alpha, Inflamm Bowel Dis. 2013;19(6):1224-31.

van den Brande JM, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology. 2003;124(7):1774-85.

Vos AC, Wildenbergv ME, Duijvestein M, Verhaar AP, van den Brink GR, Hommes DW. Anti-tumor necrosis factor-alpha antibodies induce regulatory macrophages in an Fc region-dependent manner. Gastroenterology. 2011;140(1):221-30.

Wojtal KA,Rogler G,Scharl M,Biedermann L,Frei P,Fried M et al. Fc gamma receptor CD64 modulates the inhibitory activity of infliximab. PLoS One. 2012;7(8):e43361. doi: 10.1371/journal.pone.0043361

Slevin SM, Egan LJ. Newinsights into the mechanisms of action of anti-tumor necrosis factor-alpha monoclonal antibodies in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:2909-20.

Kohno T, Tam L-TT, Stevens SR, Louie JS. Binding characteristics of tumor necrosis factor receptor-Fc fusion proteins vs anti-tumor necrosis factor mAbs. J Investig Dermatol Symp Proc. 2007;12:5-8. doi:10.1038/sj.jidsymp.5650034

Sipos O, Török A, Kalic T, Duda E, Filkor K. Reverse signaling contributes to control of chronic inflammation by anti-TNF therapeutics. Antibodies. 2015;4:123-40. doi:10.3390/antib4020123

Shen C, Assche GV, Colpaert S, Maerten P, Geboes K, Rutgeerts P et al. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther. 2005;21:251-8.

Kirchner S, Holler E, Haffner S, Andreesen R, Eissner G. Effect of different tumor necrosis factor (TNF) reactive agents on reverse signaling of membrane integrated TNF in monocytes. Cytokine. 2004;28:67-74.

Meusch U, Rossol M, Baerwald C, Hauschildt S, Wagner U. Outside-to-inside signaling through transmembrane tumor necrosis factor reverses pathologic interleukin-1beta production and deficient apoptosis of rheumatoid arthritis monocytes. Arthritis Rheum. 2009;60:2612-21.

Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R et al. Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents, Inflamm Bowel Dis. 2007;13(11):1323-32.

Mitoma H, Horiuchi T, Hatta N, Tsukamoto H, Harashima S, Kikuchi Y et al. Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology. 2005;128:376-92.

Evans HG, Roostalu U, Walter GJ, Gullick NJ, Frederiksen KS, Roberts CA et al. TNF-alpha blockade induces IL-10 expression in human CD4+ T cells. Nat Commun. 2014;5:3199.

Ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut. 2002;50(2):206-11.

Atreya R, Zimmer M, Bartsch B, Waldner MJ, Atreya I, Neumann H et al. Antibodies against tumor necrosis factor (TNF) induce T-cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14(+) macrophages. Gastroenterology. 2011;141:2026-38.

van den Brande JM, Koehler TC, Zelinkova Z, Bennink RJ, te Velde AA, ten Cate FJ et al. Prediction of antitumour necrosis factor clinical efficacy by real-time visualisation of apoptosis in patients with Crohn’s disease. Gut. 2007;56(4):509-17.

Caprioli F, Bose F, Rossi RL, Petti L, Vigano C, Ciafardini C et al. Reduction of CD68+ macrophages and decreased IL-17 expression in intestinal mucosa of patients with inflammatory bowel disease strongly correlate with endoscopic response and mucosal healing following infliximab therapy. Inflamm Bowel Dis. 2013;19(4):729-39.

Bedini C, Nasorri F, Girolomoni G, Pita O, Cavani A. Anti tumour necrosis factor-alpha chimeric antibody (infliximab) inhibits activation of skin homing CD4+ and CD8+ T lymphocytes and impairs dendritic cell function. Br J Dermatol. 2007;157(2):249-58.

Zahavi D, AlDeghaither D, O’Connell A, Weiner LM. Enhancing antibody-dependent cell-mediated cytotoxicity: a strategy for improving antibody-based immunotherapy. Antibody Therapeutics. 2018;1(1):7-12. https://doi.org/10.1093/abt/tby002

Arora T, Padaki R, Liu L, Hamburger AE, Ellison AR, Stevens SR et al. Differences in binding and effector functions between classes of TNF antagonists. Cytokine. 2009;45(2):124-31.

Taylor PC, Peters AM, Paleolog E, Chapman PT, Elliott MJ, McCloskey R et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum. 2000;43(1):38-47.

Peake ST, Bernardo D, Mann ER, Al-Hassi HO, Knight SC, Hart AL. Mechanisms of action of anti-tumor necrosis factor alpha agents in Crohn's disease. Inflamm Bowel Dis. 2013;19:1546-55.

Olsen T, Cui G, Goll R, Husebekk A, Florholmen J. Infliximab therapy decreases the levels of TNF-alpha and IFN-gamma mRNA in colonic mucosa of ulcerative colitis. Scand J Gastroenterol. 2009;44:727-35.

Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005;129:50-65.

Danese S, Sans M, Scaldaferri F, Sgambato A, Rutella S, Cittadini A et al. TNF-α blockade down-regulates the CD40/CD40L pathway in the mucosal microcirculation: a novel anti-inflammatory mechanism of infliximab in Crohn’s disease. J Immunol. 2006;176(4):2617-24. doi.org/10.4049/jimmunol.176.4.2617

Arijs I, De Hertogh G, Machiels K, Van Steen K, Lemaire K, Schraenen A et al. Mucosal gene expression of cell adhesion molecules, chemokines, and chemokine receptors in patients with inflammatory bowel disease before and after infliximab treatment. Am J Gastroenterol. 2011;106:748–61. doi: 10.1038/ajg.2011.27

Rutella S, Fiorino G, Vetrano S, Correale C, Spinelli A, Pagano N et al. Infliximab therapy inhibits inflammation-induced angiogenesis in the mucosa of patients with Crohn's disease. Am J Gastroenterol. 2011;106(4):762-70. doi: 10.1038/ajg.2011.48

Agnholt J, Kaltoft K. Infliximab downregulates interferon-gamma production in activated gut T-lymphocytes from patients with Crohn's disease. Cytokine. 2001;15(4):212-2.

Notley CA, Julia J, Inglis JJ, Alzabin S, McCann FE, McNamee KE et al. Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells. J Exp Med. 2008;205(11):2491-7. doi: 10.1084/jem.20072707

Nguyen DX, Ehrenstein MR. Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis. J Exp Med. 2016;213(7):1241-53.

Guidi L, Felice C, Procoli A, Bonanno G, Martinelli E, Marzo M et al. FOXP3(+) T regulatory cell modifications in inflammatory bowel disease patients treated with anti-TNFalpha agents. Biomed Res Int. 2013;2013:286368.

Veltkamp C, Anstaett M, Wahl K, Moller S, Gangl S, Bachmann O et al Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNF α treatment. Gut. 2011;60:1345-53.

Li Z, Vermeire S, Bullens D, Ferrante M, Van Steen K, Noman M et al. Restoration of Foxp3+ regulatory T-cell subsets and Foxp3- type 1 regulatory-like T cells in inflammatory bowel diseases during anti-tumor necrosis factor therapy. Inflamm Bowel Dis. 2015;21:2418–28.

Vos ACW, Wildenberg ME, Arijs I, Duijvestein M, Verhaar Gert de Hertogh AP, Vermeire S et al. Regulatory macrophages induced by infliximab are involved in healing in vivo and in vitro. Inflamm Bow Dis. 2012;18(3):401-8. doi.org/10.1002/ibd.21818

Published
2020/07/02
Section
Review articles