Cardio-toxicity: Importance of biomarkers

  • Jelena Kostadinović Department of medical oncology, Clinical Hospital Center Bežanijska kosa
  • Višeslav Popadić Department of cardiology, Clinical Hospital Centre Bezanijska kosa
  • Slobodan Klašnja Department of cardiology, Clinical Hospital Centre Bezanijska kosa
  • Aleksandra Klisić University of Montenegro – Faculty of Medicine, Primary Health Care Center
  • Jelena Kotur-Stevuljević University in Belgrade – Faculty of Pharmacy, Department of Medical Biochemistry
  • Zoran Andrić Department of medical oncology, Clinical Hospital Center Bezanijska kosa
  • Marija Zdravković Department of cardiology, Clinical Hospital Centre Bezanijska kosa
Keywords: cardiotoxicity biomarkers, anthracyclines, trastuzumab

Abstract


The clinical efficacy of chemotherapy, as a recognized therapeutic approach for malignant diseases, usually has certain limitations due to its cardiotoxicity (CT) and consequent cardiomyopathy, or even heart failure. CT is defined as any cardiac injury connected with oncology treatment, whether it is chemo-, radio-, targeted or immunotherapy, or cancer by itself, and it represents a great challenge for clinicians in everyday practice. A wide spectrum of factors related to chemotherapy (type of drug, dose during each cycle, cumulative dose, schedule, method of application, combination with other cardiotoxic drugs or association with radiotherapy) and patient characteristics (age, presence of cardiovascular risk factors, previous cardiovascular disease) are the determining factors that influence the frequency of CT. Imaging methods for morphological and functional monitoring of the heart muscle are used for monitoring CT. The quest for diagnostic tools for early CT detection is of great significance. In line with this, the measurement of some cardiac biomarkers has found its place in clinical settings as an early determinant of myocardial injury. Therefore, in this review article, special attention will be paid to certain well-established, as well as certain novel cardiac biomarkers, and their role in recognizing asymptomatic CT, in order to gain deeper insight into their diagnostic utility.

References

1.         Chung R, Ghosh AK, Banerjee A. Cardiotoxicity: Precision medicine with imprecise definitions. Open Heart. 2018;2:e774.

2.         Cong Y, Han X,  Wang Y, Chen Z, Lu Y, Liu T  et al.  Drug Toxicity Evaluation Based on Organ-on-a-Chip Technology: A Review. Micromachines (Basel). 2020;11(4):381.

3.         Gottfridsson C, Asteggiano R, Atar D, Badimon L, Jeroen J. Bax JJ, Cardinale D et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J. 2016;37(36):2768–2801.

4.         World Health Organization [Internet]. Breast cancer: prevention and control; c2012 [cited 2023 Feb 10]. Available from: www.who.int/cancer/detection/breastcancer/en/.

5.         Dolci A, Dominici R, Cardinale D, Sandri MT, Panteghini M. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: systematic review of the literature and recommendations for use. Am J Clin Pathol. 2008;130(5):688-95.

6.         Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263-302.

6a.  Herrmann J, Lerman A, Sandhu NP, Villarraga HR, Mulvagh SH, Kohli M. Evaluation and Management of Patients With Heart Disease and Cancer: Cardio-Oncology. Mayo Clin Proc. 2014;89(9):1287–1306.

7.         Fallah-Rad N, Walker JR, Wassef A, Lytwyn B, Bohonis S, Fang T et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II–positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57(22):2263–2270.

8.         Kajaluxy A, Lyon A.  The Role of Biomarkers in Cardio-Oncology. J Cardiovasc Transl Res. 2020;13:431–450.

9.         Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.

10.      National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) [Internet]. Version 4.0 [cited 2019 Dec 25]. Available from: http://ctep.cancer.gov/protocol
/>Development/electronic_applications/docs/ctcaev4.pdf.

11.      Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–1467.

12.      Henriksen PA.  Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2018;104(12):971–977.

13.      Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni AC, Veglia F et al. (2015). Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988.

14.      McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75.

15.      Shakir D, Rasul KI. Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. J Clin Med Res. 2009;1(1):8–12.

16.      Jain V, Bahia J, Mohebtash M, Barac A. Cardiovascular complications associated with novel cancer immunotherapies. Curr Treat Options Cardiovasc Med. 2017;19(5):36.

17.      Omland T, de Lemos JA, Sabatine MS, Cristophi AC, Rice MM, Jablonski KA et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med. 2009;361(26):2538–2547.

18.      Cardinale D, Cipolla CM. Chemotherapy-induced cardiotoxicity: Importance of early detection. Expert Rev Cardiovasc Ther. 2016;14:1297–1299.

19.      Cardinale, D., Sandri, M. T., Martinoni, A., Tricca A, Civelli M, Lamantia G et al. (2000). Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–522.

20.      Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–2754.

21.      Cardinale D, Salvatici M, Sandri MT. Role of biomarkers in cardioncology. Clin Chem Lab Med. 2011;49:1937–1948.

22.      Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. ESMO Guidelines Working Group. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol. 2012;23:vii155–66.

23.      Daugaard G, Lassen U, Bie P, Pedersen EB, Jensen KJ, Abildgaard U et al. Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur J Heart Fail. 2005;7(1):87–93.

24.      Lenihan DJ, Massey MR, Baysinger KB, Plana JC, Araujo DM, Fanale MA et al. Superior detection of cardiotoxicity during chemotherapy using biomarkers. J Card Fail. 2007;13(6):S151.

25.      Dodos F, Halbsguth T, Erdmann E, Hoppe UC. Usefulness of myocardial performance index and biochemical markers for early detection of anthracycline-induced cardiotoxicity in adults. Clin Res Cardiol. 2008;97(5):318–326.

26.      Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heizerling LM et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–1764.

27.      Johnson, DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–1755.

28.      Ananthan K, Lyon A. The role in biomarkers in cardio-oncology. J Cardiovasc Transl Res. 2020;13:431–450.

29.      Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596– 603.

30.      De Iuliis F, Salerno G, Taglieri L, De Biase L, Lanza R, Cardelli P, Scarpa S. Serum biomarkers evaluation to predict chemotherapy-induced cardiotoxicity in breast cancer patients. Tumor Biol. 2016;37(3):3379–3387.

31.      Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal Pro-B-type natriuretic peptide after highdose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51(8):1405–1410.

32.      Romano S, Fratini S, Ricevuto E, Procaccini V, Stifano G, Mancini M et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br J Cancer. 2011; 105(11):1663–1668.

33.      Lenihan DJ, Stevens, PL., Massey M, Plana JC, Araujo DM, Fanale MA et al. (2016). The utility of point-of-care biomarkers to detect cardiotoxicity during anthracycline chemotherapy: a feasibility study. J Card Fail. 2016;22(6):433–438.

34.      Cowie M. Clinical applications of B-type natriuretic peptide (BNP) testing. Eur Heart J. 2003;24(19):1710–1718.

35.      Galasko GIW, Lahiri A, Barnes SC, Collinson P, Senior R. What is the normal range for N-terminal probrain natriuretic peptide? How well does this normal range screen for cardiovascular disease? Eur Heart J. 2005;26(21):2269–2276.

36.      Takase H, Dohi Y. Kidney function crucially affects B-type natriuretic peptide (BNP), N-terminal proBNP and their relationship. Eur J Clin Invest. 2014;44(3):303–308.

37.      Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev. 2014;22(3):147-51.

38.      Radenovic S, Loncar G, Busjahn A, Apostolovic S, Zdravkovic M, Karlicic V, et al. Systemic inflammation and functional capacity in elderly heart failure patients. Clin Res Cardiol. 2018;107(4):362-367.

39.      Onitilo AA, Engel JM, Stankowski RV, Liang H, Berg RL, Doi SAR. High-sensitivity C-reactive protein (hsCRP) as a biomarker for trastuzumab-induced cardiotoxicity in HER2-positive early-stage breast cancer: a pilot study. Breast Cancer Res Treat. 2012;134(1):291–298.

40.      Anber ZNH, Saleh BOM, Al-Rawi SA. The cardiotoxicity effect of different chemotherapeutic regimens in Iraqi patients with breast cancer: A follow up study. Helion. 2019;5(8):e02194.

41.      Ky B, Putt M, Sawaya H, French B, Januzzi JL, Sebag IA et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809–816.

42.      Lee DW, Gardner R, Porter DL, Louis CU, Ahmend N, Jensen M et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–195.

43.      Kotur-Stevuljevic J, Memon L, Stefanovic A, Spasic S, Spasojevic-Kalimanovska V, Bogavac-Stanojevic N, et al. Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients. Clin Biochem. 2007;40:181–187.

44.      Memon L, Spasojević-Kalimanovska V, Bogavac-Stanojević N, Kalimanovska-Ostrić D, Jelic-Ivanović Z, Spasić S, Topić A. Association of C-reactive protein and fibrinogen with the presence and extent of angiographically verified coronary artery disease. Tohoku J Exp Med. 2006;209(3):197–206.

45.      Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–3017.

46.      Mukhopadhyay P, Rajesh M, Bátkai S, Kashiwaya Y, Hasko G, Liaudet L et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296(5):H1466–H1483.

47.      Baldus S, Heeschen C, Meinertz T, Zeiher MA, Eiserich JP, Munzel T et al. (2003). Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108(12):1440–1445.

48.      Reichlin T, Socrates T, Egli P, Potocki M, Breidthardt T, Arenja N et al. Use of myeloperoxidase for risk stratification in acute heart failure. Clin Chem. 2010;56(6):944–951.

49.      Anatoliotakis N, Deftereos S, Bouras G, Giannopoulos G, Tsounis D, Angelidis C et al. Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem. 2013;13(2):115–138.

50.      Smiljić S. Vascular and endocardial endothelial dysfunction in heart failure. Glasilo podružnice Srpskog lekarskog društva Zaječar. 2017;42(2):85-92.

51.      Lui T, Song D, Dong J, Zhu P, Liu J, Liu W, et al. Current understanding of the pathophysiology of myocardial fibrosis and its quantitative assessment in heart failure. Front Physiol. 2017;8:238.

52.      Miljković M, Stefanović A, Bogavac-Stanojević N, Simić-Ogrizović S, Dumić J, Černe D, et al. Association of Pentraxin-3, Galectin-3 and Matrix Metalloproteinase-9/Timp-1 with Cardiovascular Risk in Renal Disease Patients. Acta Clin Croat. 2017;56:673-680.

53.      Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760(4):616-35.

54.      van Boxtel W, Bulten BF, Mavinkurve-Groothuis AMC, Belersen L, Mandigers CMPW, Joosten LAB et al. New biomarkers for early detection of cardiotoxicity after treatment with docetaxel, doxorubicin and cyclophosphamide. Biomarkers. 2015;20(2):143–148.

55.      Schindler EI, Szymanski JJ, Hock KG, Geltman EM, Scott MG. Short- and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with stable. Clin Chem. 2016;62(2):360-6.

56.      Wollert KC, Kempf T, Lagerqvist B, Lindahl B, Olofsson S, Allhoff T, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non–ST-elevation acute coronary syndrome. Circulation. 2007;116(14):1540–1548.

57.      Chen A, Hou W, Zhang Y, Chen Y, He B. Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. Int J Cardiol. 2015;182:168–170.

58.      Savic-Radojevic A, Pljesa-Ercegovac M, Matic M,  Simic D,  Radovanovic S. Simic T. Chapter Four - Novel Biomarkers of Heart Failure. Adv Clin Chem. 2017;79:93-152.

59.      Wollert KC, Kempf T, Lagerqvist B, Lindahl B, Olofsson S, Allhoff T, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non–ST-elevation acute coronary syndrome. Circulation. 2007;116(14):1540–1548.

60.      Gaggin HK, Januzzi JL. Biomarkers and diagnostics in heart failure, Biochim Biophys Acta. 2013;1832:2442–2450.

61.      Kempf T, Wollert KC. Growth-differentiation factor-15 in heart failure. Heart Fail Clin. 2009;5:537–547. 

62.      Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015;101(12):921–928.

63.      Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–10518.

64.      Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–7233. 

65.      Dimov I, Jankovic Velickovic L, Stefanovic V. Urinary exosomes. Sci World J. 2009;9:1107–1118. 

66.      Michael A, Bajracharya S, Yuen P, Zhou H, Star AR, Illei GG et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16:34–38.

67.      Min PK, Chan SY. The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Investig. 2015;45(8):860–874.

68.      Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H et al. MicroRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med. 2015;9(11):1153–1176.

69.      Krauskopf J, Verheijen M, Kleinjans JC, de Kok TM, Caiment F. Development and regulatory application of microRNA biomarkers. Biomark Med. 2015;9(11):1137–115.

70.      Mikaelian I, Scicchitano M, Mendes O, Thomas RA, LeRoy BE. Frontiers in preclinical safety biomarkers: microRNAs and messenger RNAs. Toxicol Pathol. 2013;41(1):18–3.

71.      Ruggeri C, Gioffré S, Achilli F, Colombo IG, D’Alessandra Y. Role of microRNAs in doxorubicin-induced cardiotoxicity: an overview of preclinical models and cancer patients. Heart Fail Rev. 2018;23(1):109–122.

72.      Rigaud VOC, Ferreira LRP, Ayub-Ferreira SM, Avila SM, Brandao SM, Cruz FD et al. Circulating miR-1 as a potential biomarker of doxorubicin induced cardiotoxicity in breast cancer patients. Oncotarget. 2017;8(4):6994-7002.

73.      Chen L, Xu Y. MicroRNAs as Biomarkers and Therapeutic Targets in Doxorubicin-Induced Cardiomyopathy: A Review. Front Cardiovasc Med. 2021;8:740515.

74.      Sayed ASM, Xia K, Salma U, Yang TL, Peng J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ. 2014;23(6):503–510.

75.      Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865– 3877.

76.      Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol. 2015;11(4):601–611.

77.      Yokoi T, Nakajima M. microRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol. 2013;53:377-400.

78.      Calvano J, Achanzar W, Murphy B, DiPiero J, Hixson C, Parrula C et al. Evaluation of microRNAs-208 and 133a/b as differential biomarkers of acute cardiac and skeletal muscle toxicity in rats. Toxicol Appl Pharmacol. 2016;312:53–60.

79.      Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H, Smith AM et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019;140(1):31–41.

80.      Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–1006.

81.      Nakano HM, Udagawa C, Shimo A, Kojima Y, Yoshie R, Zaha H et al. A Genome-Wide Association Study Identifies Five Novel Genetic Markers for Trastuzumab-Induced Cardiotoxicity in Japanese Population. Biol Pharm Bull. 2019;42:2045–2053.

82.      Mato JM, Martínez-Chantar ML, Lu SC. Systems biology for hepatologists. Hepatology. 2014;60:736–743.

83.     Cheng ML, Wang CH, Shiao MS, Liu MH, Huang YY, Huang CY, et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure. J Am Coll Cardiol. 2015;65:1509–1520.

Published
2023/02/27
Section
Review articles