Current role of tribological tests: striving for full characterization of medicinal and cosmetic products

  • Andjela Tošić University of Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
  • Tijana Stanković University of Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
  • Tanja Ilić University of Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
  • Snežana Savić University of Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
  • Ivana Pantelić University of Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
Keywords: Friction, oral dosage forms, topical drugs, cosmetic products, artificial joint/cartilage

Abstract


Tribology investigates the events that happen on the surfaces of two substances/objects that are in direct or indirect contact through assessing friction, lubrication and/or wear. In particular, friction measurements could provide the information on the textural characteristics of (per)oral pharmaceutical preparations and contribute to the understanding of palatability. On the other hand, tribological tests have been more intensively used to characterize topical preparations (pharmaceutical, cosmetic), giving a thorough insight into the tactile and texture properties of these preparations. However, these tests are often combined with rheological, textural, and certain biophysical approaches. Additionally, the materials used for constructing artificial joints and articular cartilages are true tribological systems, developed and optimized in order to have properties that resemble the natural ones. Since tribological studies can be used to assess a wide range of drug dosage forms and products in general, the equipment used may be quite diverse. Accordingly, a special section of this work is committed to the description of the testing equipment’s specifications and the applied protocols. The investigation of recently regulatory discovered phenomena, such as transformation/metamorphosis of the vehicle/base of topical preparations, have brought tribology back into focus as a potential assessment method.

References

1.       Banjac M, Vencl A, Otovic S. Friction and wear processes-Thermodynamic Approach. Tribol Ind. 2014;36(4):341-347.

2.       Tas MO, Banerji A, Lou M, Lukitsch MJ, Alpas AT. Roles of mirror-like surface finish and DLC coated piston rings on increasing scuffing resistance of cast iron cylinder liners. Wear. 2017;376-377:1558-1569.

3.       Meng Y, Xu J, Jin Z, Prakash B, Hu Y. A review of recent advances in tribology. Friction. 2020;8:221-300.

4.       Kumar GV, Rao CSP, Selvaraj N. Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites–a review. J Miner Mater Char Eng. 2011;10(01):59.

5.       Williams JA, Le HR. Tribology and MEMS. J Phys D. 2016;39(12):R201.

6.       Li J, Li J, Yan J, Ren T, Zhao Y. The tribological chemistry of novel triazine derivatives as additives in synthetic diester. Tribol Trans. 2011;54(5):793-799.

7.       Aziz NAM, Yunus R, Hamid HA, Ghassan AAK, Omar R, Rashid U, Abbas Z. An acceleration of microwave-assisted transesterification of palm oil-based methyl ester into trimethylolpropane ester. Sci Rep. 2020;10(1):19652.

8.       Pradal C, Stokes JR. Oral tribology: Bridging the gap between physical measurements and sensory experience. Curr Opin Food Sci. 2016;9:34-41.

9.       Batchelor H, Venables R, Marriott J, Mills T. The application of tribology in assessing texture perception of oral liquid medicines. Int J Pharm. 2015;479(2):277-81.

10.    Ding S, Bhushan B. Tactile perception of skin and skin cream by friction induced vibrations. J Colloid Interface Sci. 2016;481:131-43.

11.    Guezmil M, Bensalah W, Mezlini S. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions. J Mech Behav Biomed Mater. 2016;63:375-385.

12.    Ludema KC, Ajayi L. Friction, wear, lubrication: a textbook in tribology. Boca Raton: CRC press; 1996.

13.    Ermakov SF, Myshkin NK. Liquid-crystal nanomaterials. Tribology and applications. NY: Springer; 2018.

14.    De Vicente J, Stokes JR, Spikes HA. Soft lubrication of model hydrocolloids. Food Hydrocoll. 2006;20(4):483-491.

15.    Mahdi MH, Conway BR, Mills T, Smith AM. Gellan gum fluid gels for topical administration of diclofenac. Int J Pharm. 2016;515(1-2):535-542.

16.    Su CY, Huang SS, Fang HW. Tribology of total artificial joints. Polymers (Basel). 2018;10(6):635.

17.    Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3(11):829-36.

18.    Meghan EK, Gure AE, Benson JM, Ortved KF, Burris DL, Price C. Comparative tribology II-Measurable biphasic tissue properties have predictable impacts on cartilage rehydration and lubricity. Acta Biomater. 2022;138:375-389.

19.    Hofmanova JK, Mason J, Batchelor HK. Tribology provides an in vitro tool that correlated to in vivo sensory data on the mouthfeel of coated tablets. Int J Pharm. 2021;597:120323.

20.    Łyszczarz E, Hofmanova J, Szafraniec-Szczęsny J, Jachowicz R. Orodispersible films containing ball milled aripiprazole-poloxamer® 407 solid dispersions. Int J Pharm. 2020;575:118955.

21.    Savary G, Gilbert L, Grisel M, Picard C. Instrumental and sensory methodologies to characterize the residual film of topical products applied to skin. Skin Res Technol. 2019;25(4):415-423.

22.    Singh RA, Yoon ES, Jackson RL. Biomimetics: the science of imitating nature. Tribol Lubr Technol. 2009;65(2):40.

23.    Affatato S, Trucco D, Taddei P, Vannozzi L, Ricotti L, Nessim GD, Lisignoli G. Wear behavior characterization of hydrogels constructs for cartilage tissue replacement. Materials. 2021;14(2):428.

24.    Dowson D. Bio-tribology. Faraday Discuss. 2012;156:9-30.

25.    Bay-Jensen AC, Hoegh-Madsen S, Dam E, Henriksen K, Sondergaard BC, Pastoureau P, Karsdal MA. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int. 2010;30:435-442.

26.    Eudier F, Savary G, Grisel M, Picard C. Skin surface physico-chemistry: Characteristics, methods of measurement, influencing factors and future developments. Adv Colloid Interface Sci. 2019;264:11-27.

27.    Sivamani RK, Goodman J, Gitis NV, Maibach HI. Friction coefficient of skin in real-time. Skin Res Technol. 2003;9(3):235-239.

28.    Van der Bilt A, Engelen L, Pereira LJ, Van der Glas HW, Abbink JH. Oral physiology and mastication. Physiol Behav. 2006;89(1):22-27.

29.    Xu F, Laguna L, Sarkar A. Aging-related changes in quantity and quality of saliva: Where do we stand in our understanding? J Texture Stud. 2019;50(1):27-35.

30.    EMA/CHMP/QWP/805880/2012 Rev. 2. Guideline on pharmaceutical development of medicines for paediatric use. CHMP, 2012.

31.    Baguley D, Lim E, Bevan A, Pallet A, Faust SN. Prescribing for children–taste and palatability affect adherence to antibiotics: a review. Arch Dis Child. 2012;97(3):293-297.

32.    EMA/CHMP/QWP/292439/2017. Reflection paper on the pharmaceutical development of medicines for use in the older population. CHMP, 2017.

33.    Desai N, Masen M, Cann P, Hanson B, Tuleu C, Orlu M. Modernising orodispersible film characterisation to improve palatability and acceptability using a toolbox of techniques. Pharmaceutics. 2022;14(4):732.

34.    Singh Malik D, Mital N, Kaur G. Topical drug delivery systems: a patent review. Expert Opin Ther Pat. 2016;26(2):213-228.

35.    Ilić T, Pantelić I, Savić S. The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence. Pharmaceutics. 2021;13(5):710.

36.    European Pharmacopoeia, 11th ed. Strasbourg: Council of Europe, 2023.

37.    Product-Specific Guidances for Generic Drug Development [Internet]. U.S. Food and Drug Administration, c2022 [cited 2023 March 20] Available from: https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm. style="mso-spacerun: yes;"> 

38.    The United States Pharmacopeia (USP 44–NF 39), Rockville: United States Pharmacopeial Convention, Inc., 2021.

39.    CHMP/QWP/708282/2018. Draft guideline on quality and equivalence of topical products. CHMP, 2018.

40.    Surber C, Ulrich Knie. Metamorphosis of Vehicles: Mechanisms and Opportunities. Curr Probl Dermatol. 2018;54:152-165.

41.    Timotijević MD, Ilić T, Savić S, Pantelić I. Simultaneous Physico-Mechanical and In Vivo Assessment towards Factual Skin Performance Profile of Topical Polymeric Film-Forming Systems. Pharmaceutics. 2022;14(2):223.

42.    Carrington A, Rasiq Z, Sivamani RK. Tribology of Skin. In: Dreher F, Jungman E, Sakamato K, Maibach HI, editors. Handbook of Cosmetic Science and Technology. 5th ed. Boca Raton, ‎Florida: CRC Press; 2022; p. 161-166.

43.    Ali A, Skedung L, Burleigh S, Lavant E, Ringstad L, Anderson CD, et al. Relationship between sensorial and physical characteristics of topical creams: A comparative study on effects of excipients. Int J Pharm. 2022;613:121370.

44.    Scheibert J, Leurent S, Prevost A, Debrégeas G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science. 2009;323(5920):1503-1506.

45.    Bhushan B. Nanotribological and nanomechanical properties of skin with and without cream treatment using atomic force microscopy and nanoindentation. J Colloid Interface Sci. 2012;367(1):1-33.

46.    Afzal S, Zahid M, Rehan ZA, Shakir HMF, Javed H, Aljohani MMH, et al. Preparation and evaluation of polymer-based ultrasound gel and its application in ultrasonography. Gels. 2022;8(1):42.

47.    Zhang X, M VJ, Qu Y, He X, Ou S, Bu J, et al. Dry eye management: targeting the ocular surface microenvironment. Int J Mol Sci. 2017;18(7):1398.

48.    Sivamani RK, Goodman J, Gitis NG, Maibach HI. Friction coefficient of skin in real-time. Skin Res Technol. 2003;9(3):235-9.

49.    Sivamani RK, Wu GC, Gitis NV, Maibach HI. Tribological testing of skin products: gender, age, and ethnicity on the volar forearm. Skin Res Technol. 2003;9(4):299-305.

50.    Bostan L, Sfarghiu Trunfio AM, Verestiuc L, Popa MI, Munteanu F, Berthier Y. Macro- and nano-tribological characterisation of a new HEMA hydrogel for articular cartilage replacement. Comput Methods Biomech Biomed Engin. 2010;13(S1):33-35.

51.    Duan Y, Liu Y, Zhang C, Chen Z, Wen S. Insight into the Tribological Behavior of Liposomes in Artificial Joints. Langmuir. 2016;32(42):10957-10966.

52.    Tateiwa T, Takahashi Y, Pezzotti G, Shishido T, Masaoka T, Sano K, Yamamoto K. Tribology of human and artificial joints. Biomed Mater Eng. 2020;31(2):107-117.

53.    Ren K, Wan H, Kaper H, Sharma PK. Dopamine-conjugated hyaluronic acid delivered via intra-articular injection provides articular cartilage lubrication and protection. J Colloid Interface Sci. 2022;619:207-218.

54.    Deng Y, Xiong D, Wang K. Biotribological properties of UHMWPE grafted with AA under lubrication as artificial joint. J Mater Sci Mater Med. 2013;24(9):2085-91.

55.    Zhang K, Peng X, Cheng C, Zhao Y, Yu X. Preparation, characterization, and feasibility study of Sr/Zn-doped CPP/GNS/UHMWPE composites as an artificial joint component with enhanced hardness, impact strength, tribological and biological performance. RSC Adv. 2021;11(36):21991-21999.

56.    Shirani A, Hu Q, Su Y, Joy T, Zhu D, Berman D. Combined Tribological and Bactericidal Effect of Nanodiamonds as a Potential Lubricant for Artificial Joints. ACS Appl Mater Interfaces. 2019;11(46):43500-43508.

57.    Stokes JR, Macakova L, Paszun AC, de Kruif CG, de Jongh HDJ. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions. Langmuir. 2011;27(7):3474-84.

58.    Kikuchi K, Mayama H, Nonomura Y. Nonlinear Friction Dynamics of Oil-in-Water and Water-in-OilEmulsions on Hydrogel Surfaces. Langmuir. 2021;37(26):8045-8052.

59.    Suhail S, Sardashti N, Jaiswal D, Rudraiah S, Misra M, Kumbar SG. Engineered Skin Tissue Equivalents for Product Evaluation and Therapeutic Applications. Biotechnol J. 2019;14(7):e1900022.

60.    Tang W, Bhushan B. Adhesion, Friction and wear characterization of skin and skin cream using atomic force microscope. Colloids Surf B Biointerfaces. 2010;76(1):1-15

61.    Zhu YH, Song SP, Luo W, Elias PM, Man MQ. Characterization of skin friction coefficient, and relationship to stratum corneum hydration in a normal Chinese population. Skin Pharmacol Physiol. 2011;24(2):81-6.

62.    Egawa M, Oguri M, Hirao T, Takahashi M, Miyakawa M. The evaluation of skin friction using a frictional feel analyzer. Skin Res Technol. 2002;8(1):41-51.

63.    Sakata Y, Mayama H, Nonomura Y. Friction dynamics of moisturized human skin under non-linear motion. Int J Cosmet Sci. 2022;44(1):20-29.

64.    Bauer H. Frictiometer FR 700 [Internet]. Köln: Courage + Khazaka Electronic, c2023 [cited 2023 March 20] Available from:  https://courage-khazaka.de/en/scientific-products/efficacy-tests/in-vitro?view=article&id=175%3Africtiometer-e&catid=16%3Aalle-produkte.>

65.    MTM 2 Mini-Traction Machine [Internet]. London: PCS Instruments, c2023 [cited 2023 March 20] Avalaible from: https://pcs-instruments.com/wp-content/uploads/2014/03/MTM2.pdf.

66.    KES-SE Friction Tester - Pioneer of Texture Testers and Electronic Measuring Instruments [Internet]. Kyoto: KATO TECH CO., LTD, c2023 [cited 2023 March 20] Available from:  https://english.keskato.co.jp/archives/products/kes-se.>

67.    HR-2 Discovery Hybrid Rheometer [Internet]. New Castle: TA Instruments, c2023 [cited 2023 March 20] Available from: https://www.tainstruments.com/dhr-2/.>

Published
2023/04/26
Section
Review articles