Hydrogen sulfide-releasing therapeutics - how far have we come in clinical studies?

  • Marija Marinko University of Belgrade – Faculty of Pharmacy, Department of Pharmacology
  • Aleksandra Novaković University of Belgrade – Faculty of Pharmacy, Department of Pharmacology
Keywords: hydrogen sulfide, clinical trials, heart failure, NSAID

Abstract


Hydrogen sulfide (H2S) is the youngest member of the gasotransmitters family consisting of nitric oxide (NO) and carbon monoxide (CO). This signalling molecule is implicated in the regulation of a wide range of processes, such as inflammation, pain, and tissue repair, and has an important role in signalling processes affecting cardiovascular health, either as an independent effector or as an enhancer of the NO system. With the discovery of the H2S role in the pathogenesis of many diseases, the development of new pharmaceuticals that could be useful in conditions with disturbed levels of endogenous H2S began. Today, the development of H2S-releasing drugs has reached the level of clinical studies. Drugs such as SG1002, aimed at the treatment of heart failure, and ATB-346, aimed at the treatment of arthritis, have been tested in Phase I/II clinical studies and have shown significant therapeutic potential. Additionally, it has been shown that some already known drugs, such as zofenopril, produce part of their beneficial effects by releasing H2S.Evidence from clinical studies presented in this paper encourages further clinical testing of H2S-based therapeutics and the possibility of their application in a wide range of diseases, such as hypertension, diabetes and chronic kidney disease.

References

1.          Beltowski J, Jamroz-Wisniewska A. Hydrogen sulfide and endothelium-dependent vasrelaxation. Molecules. 2014;19:21183-99.

2.          Giuffrè A, Vicente JB. Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. Oxid Med Cell Longev. 2018;2018:6290931.

3.          Szabo C. A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochem Pharmacol. 2018;149:5-19.

4.          Abe K, Kimura H. The possible role of hydrogen n sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066–71.

5.          Wu D, Hu Q, Zhu Y. Therapeutic application of hydrogen sulfide donors: the potential and challenges. Front Med. 2016;10(1):18-27.

6.          Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol. 2017;312(5):C537-49.

7.          Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H2S Signaling through Persulfidation. Chem Rev. 2018;118(3):1253-337.

8.          Billiar TR, Cirino G, Fulton D, Motterlini R, Papapetropoulos A, Szabo C. Hydrogen sulphide synthesis (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE. 2019;2019(4). doi: 10.2218/gtopdb/F279/2019.4.

9.          Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev. 2017;69(4):497-564.

10.       Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci. 2017;74(8):1391-412.

11.       Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun. 1997;237:527-31.

12.       Khattak S, Rauf MA, Khan NH, Zhang Q-Q, Chen H-J, Muhammad P, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules. 2022;27(11):3389.

13.       Marinko M, Hou HT, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, et al. Mechanisms underlying the vasorelaxant effect of hydrogen sulfide on human saphenous vein. Fundam Clin Pharmacol. 2021;35(5):906-18.

14.       Materazzi S, Zagli G, Nassini R, Bartolini I, Romagnoli S, Chelazzi C, et al. Vasodilator activity of hydrogen sulfide (H2S) in human mesenteric arteries. Microvasc Res. 2017;109:38-44.

15.       Kutz JL, Greaney JL, Santhanam L, Alexander LM. Evidence for a functional vasodilatatory role for hydrogen sulphide in the human cutaneous microvasculature. J Physiol. 2015;593:2121-9.

16.       Ariyaratnam P, Loubani M, Morice AH. Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc Res. 2013;90:135-7.

17.       Webb GD, Lim LH, Oh VM, Yeo SB, Cheong YP, Ali MY, et al. Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. J Pharmacol Exp Ther. 2008;324:876-82.

18.       Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005;26(1-2):33-65.

19.       Li Q, Youn JY, Cai H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J Hypertens. 2015;33(6):1128-36.

20.       Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A. 2012;109(23):9161-6.

21.       Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol. 2017;312:C3-15.

22.       Bauer CC, Boyle JP, Porter KE, Peers C. Modulation of Ca2+ signalling in human vascular endothelial cells by hydrogen sulfide. Atherosclerosis. 2010;209(2):374-80.

23.       Altaany Z, Ju Y, Yang G, Wang R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal. 2014;7(342):ra87.

24.       Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, et al. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat Chem Biol. 2012;8:714–24.

25.       Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal. 2020;33(14):1010-45.

26.       Sun NL, Xi Y, Yang SN, Ma Z, Tang CS. [Plasma hydrogen sulfide and homocysteine levels in hypertensive patients with different blood pressure levels and complications]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35(12):1145-8.

27.       Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, et al. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal. 2010;12(11):1333-7.

28.       Jiang HL, Wu HC, Li ZL, Geng B, Tang CS. Changes of the new gaseous transmitter H2S in patients with coronary heart disease. Di Yi Jun Yi Da Xue Xue Bao. 2005;25(8):951-4.

29.       Wang W, Feng SJ, Li H, Zhang XD, Wang SX. Correlation of Lower Concentrations of Hydrogen Sulfide with Activation of Protein Kinase CβII in Uremic Accelerated Atherosclerosis Patients. Chin Med J (Engl). 2015;128(11):1465-70.

30.       Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res. 2014;114(4):730-7.

31.       Watts M, Kolluru GK, Dherange P, Pardue S, Si M, Shen X, et al. Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation. Redox Biol. 2021;38:101817.

32.       Zhang F, Li X, Stella C, Chen L, Liao Y, Tang C, Jin H, Du J. Plasma hydrogen sulfide in differential diagnosis between vasovagal syncope and postural orthostatic tachycardia syndrome in children. J Pediatr. 2012;160(2):227-31.

33.       Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, et al. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci. 2021;22(4):2194.

34.       Li Z, Polhemus DJ, Lefer DJ. Evolution of Hydrogen Sulfide Therapeutics to Treat Cardiovascular Disease. Circ Res. 2018;123(5):590-600.

35.       Barr LA, Shimizu Y, Lambert JP, Nicholson CK, Calvert JW. Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress. Nitric Oxide. 2015;46:145-56.

36.       Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, et al. H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation. 2013;127(10):1116-27.

37.       Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, et al. Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol. 2018;116:29-40.

38.       Polhemus DJ, Li Z, Pattillo CB, Gojon G Sr, Gojon G Jr, Giordano T, et al. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther. 2015;33(4):216-26.

39.       US National Library of Medicine [Internet]. ClinicalTrials.gov [cited 2023 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT02278276?term=NCT02278276&draw=2&rank=1

40.       Morales Martinez A, Sordia-Hernández L, Morales JA, Merino M, Vidal O, García Garza M, et al. A randomized clinical study assessing the effects of the antioxidants, resveratrol or SG1002, a hydrogen sulfide prodrug, on idiopathic oligoasthenozoospermia. Asian Pac J Reprod. 2015;4(2):106-11.

41.       Ambrosioni E, Borghi C, Magnani B. Early treatment of acute myocardial infarction with angiotensin-converting enzyme inhibition: safety considerations. SMILE pilot study working party. Am J Cardiol. 1991;68(14):101D–110D.

42.       Ambrosioni E, Borghi C, Magnani B. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. The Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators. N Engl J Med. 1995;332(2):80–5.

43.       Borghi C, Ambrosioni E. Survival of Myocardial Infarction Longterm Evaluation-2 Working Party. Double-blind comparison between zofenopril and lisinopril in patients with acute myocardial infarction: results of the Survival of Myocardial Infarction Longterm Evaluation-2 (SMILE-2) study. Am Heart J. 2003;145:80–7.

44.       Borghi C, Ambrosioni E. Survival of Myocardial Infarction Longterm Evaluation Study Group. Effects of zofenopril on myocardial ischemia in post-myocardial infarction patients with preserved left ventricular function: the Survival of Myocardial Infarction Long-term Evaluation (SMILE)-ISCHEMIA study. Am Heart J. 2007;153(3):445.e7-14.

45.       Borghi C, Ambrosioni E, Novo S, Vinereanu D, Ambrosio G; SMILE-4 Working Party. Comparison between zofenopril and ramipril in combination with acetylsalicylic acid in patients with left ventricular systolic dysfunction after acute myocardial infarction: results of a randomized, double-blind, parallel-group, multicenter, European study (SMILE-4). Clin Cardiol. 2012;35(7):416–23.

46.       Subissi A, Evangelista S, Giachetti A. Preclinical profile of zofenopril: an angiotensin converting enzyme inhibitor with peculiar cardioprotective properties. Cardiovasc Drug Rev. 1999;17(2):115–33.

47.       Bozcali E, Dedeoglu DB, Karpuz V, Suzer O, Karpuz H. Cardioprotective effects of zofenopril, enalapril and valsartan against ischaemia/reperfusion injury as well as doxorubicin cardiotoxicity. Acta Cardiol. 2012;67:87–96.

48.       Evangelista S, Manzini S. Antioxidant and cardioprotective properties of the sulphydryl angiotensin-converting enzyme inhibitor zofenopril. J Int Med Res. 2005;33:42–54.

49.       Cacciatore F, Bruzzese G, Vitale DF, Liguori A, de Nigris F, Fiorito C, et al. Effects of ACE inhibition on circulating endothelial progenitor cells, vascular damage, and oxidative stress in hypertensive patients. Eur J Clin Pharmacol. 2011;67:877–83.

50.       Napoli C, Sica V, de Nigris F, Pignalosa O, Condorelli M, Ignarro LJ, et al. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am Heart J. 2004;148:e5.

51.       Macabrey D, Deslarzes-Dubuis C, Longchamp A, Lambelet M, Ozaki CK, Corpataux JM, et al. Hydrogen Sulphide Release via the Angiotensin Converting Enzyme Inhibitor Zofenopril Prevents Intimal Hyperplasia in Human Vein Segments and in a Mouse Model of Carotid Artery Stenosis. Eur J Vasc Endovasc Surg. 2022;63(2):336-46.

52.       Bucci M, Vellecco V, Cantalupo A, Brancaleone V, Zhou Z, Evangelista S, et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc Res. 2014;102:138-47.

53.       Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL, et al. Zofenopril Protects Against Myocardial Ischemia-Reperfusion Injury by Increasing Nitric Oxide and Hydrogen Sulfide Bioavailability. J Am Heart Assoc. 2016;5(7):e003531.

54.       De Koning ML, van Dorp P, Assa S, Hartman MH, Voskuil M, Anthonio RL, et al. Rationale and Design of the Groningen Intervention Study for the Preservation of Cardiac Function with Sodium Thiosulfate after ST-segment Elevation Myocardial Infarction (GIPS-IV) trial. Am Heart J. 2022;243:167-76.

55.       De Koning MLY, Assa S, Maagdenberg CG, van Veldhuisen D, Pasch A, van Goor H, et al. Safety and tolerability of sodium thiosulfate in patients with an acute coronary syndrome undergoing coronary angiography: a dose-escalation safety pilot study (SAFE-ACS). J Interv Cardiol. 2020;2020:6014915.

56.       American College of Cardiology [Internet]. GIPS-IV: Sodium Thiosulfate Does Not Reduce Heart Damage After MI [updated 2022 April 4; cited 2023 May 24]. Available from: https://www.acc.org/Latest-in-Cardiology/Articles/2022/04/03/13/22/Mon-11am-GIPS-IV-acc-2022

57.       Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Antonelli E, et al. (2006). Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther. 2006;316:325-35.

58.       Cenac N, Castro M, Desormeaux C, Colin P, Sie M, Ranger M, et al. A novel orally administered trimebutine compound (GIC-1001) is anti-nociceptive and features peripheral opioid agonistic activity and Hydrogen Sulphide-releasing capacity in mice. Eur J Pain. 2016;20(5):723-30.

59.       Paquette JM, Rufiange M, Iovu Niculita M, Massicotte J, Lefebvre M, Colin P, et al. Safety, tolerability and pharmacokinetics of trimebutine 3-thiocarbamoylbenzenesulfonate (GIC-1001) in a randomized phase I integrated design study: single and multiple ascending doses and effect of food in healthy volunteers. Clin Ther. 2014;36(11):1650-64.

60.       US National Library of Medicine [Internet]. ClinicalTrials.gov [cited 2023 May 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT01926444?term=NCT01926444&draw=2&rank=1

61.       Wallace JL, Nagy P, Feener TD, Allain T, Ditrói T, Vaughan DJ, et al. A proof-of-concept, Phase 2 clinical trial of the gastrointestinal safety of a hydrogen sulfide-releasing anti-inflammatory drug. Br J Pharmacol. 2020;177(4):769-77.

62.       Wallace JL, Caliendo G, Santagada V, Cirino G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br J Pharmacol. 2010;159(6):1236-46.

63.       Wallace JL, Vaughan D, Dicay M, MacNaughton WK, de Nucci G. Hydrogen Sulfide-Releasing Therapeutics: Translation to the Clinic. Antioxid Redox Signal. 2018;28(16):1533-40.

Published
2023/06/30
Section
Review articles