Association of catechol-O-methyltransferase gene polymorphisms with treatment response and levodopa-induced complications in Parkinson's disease: A summary of current knowledge

  • Branislava Radojević Clinical Hospital Centre Zvezdara, Department for Neurology
  • Ivan Jančić University in Belgrade – Faculty of Pharmacy, Department of Microbiology and Immunology
  • Miroslav Savić University of Belgrade – Faculty of Pharmacy, Department of Pharmacology
  • Nataša Dragašević-Mišković University of Belgrade - Faculty of Medicine, Neurological Hospital
  • Vladimir Kostić University of Belgrade - Faculty of Medicine, Neurological Hospital
Keywords: Parkinson's disease, levodopa-induced dyskinesia, hallucinations, COMT gene, single nucleotide polymorphisms, Val158Met (rs4680)

Abstract


Catechol-O-methyltransferase (COMT) is one of the cardinal enzymes in the degradation of catecholamines and levodopa. Genetic variants of the COMT gene may affect COMT enzyme activity. The most examined COMT gene polymorphism is the nonsynonymous single nucleotide polymorphism (SNP) in exon 4 (Val108/158Met; rs4680). This highly functional polymorphism is responsible for fourfold variations in enzyme activity and dopamine catabolism. Recent data suggested that even synonymous SNPs of the COMT gene can lead to changes in enzyme activity. Genetically determined COMT activity can affect an individual's response to levodopa therapy and carries the risk of complications from prolonged levodopa use in Parkinson's disease (PD) patients. Identifying at-risk individuals through genetic susceptibility markers could help to prevent the development of levodopa-induced complications in PD.

References

Jankovic J. Motor fluctuations and dyskinesias in Parkinson's disease: clinical manifestations. Mov Disord. 2005;20(11):S11-6.

Olanow WC, Watts RL, Koller WC. An algorithm (decision tree) for the management of Parkinson's disease (2001): Treatment Guidelines. Neurology. 2001;56(11 Suppl 5):S1-S88.

Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16:448–458.

Fénelon G, Mahieux F, Huon R, Ziégler M. Hallucinations in Parkinson's disease: prevalence, phenomenology, and risk factors. Brain. 2000;123:733-745.

Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melén K, Julkunen I, et al. Kinetics of human soluble and membrane-bound catechol-o-methyltransferase: A revised mechanism of the thermolabile variant of the enzyme. Biochemistry. 1995;34:4202–4210.

Tunbridge EM, Harrison PJ, Weinberger DR. Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry. 2006;60:141-51.

Matsumoto M, Shannon Weickert C, Akil M, Lipska BK, Hyde M, Herman MM, et al. Catechol-o-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function. Neuroscience. 2003;116:127–137.

Andersen S, Skorpen F. Variation in the COMT gene: implications for pain perception and pain treatment. Pharmacogenomics. 2009;10(4):669–684.

Crum AJ, Akinola M, Turnwald BP, Kaptchuk TJ, Hall KT. Catechol-O-Methyltransferase moderates the effect of stress mindset on affect and cognition. PloS ONE. 2018;13(4):e0195883.

Bruder GE, Keilp JG, Xu H, Shikhman M, Schori E, Gorman JM, et al. Catechol-O-methyltransferase (COMT) genotypes and working memory: associations with differing cognitive operations. Biol Psychiatry. 2005;58(11):901-7.

Bertolino A, Caforio G, Blasi G, Rampino A, Nardini M, Weinberger DR, et al. COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia. Schizophr Res. 2007;95(1-3):253-5.

Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314:1930–3.

Zhao C, Wang Y, Bin Zhang B, Yue Y, Zhang J. Genetic variations in catecholO-methyltransferase gene are associated with levodopa response variability in Chinese patients with Parkinson’s disease. Sci Rep. 2020;10:9521.

Contin M, Martinelli P, Mochi M, Riva R, Albani F, Baruzziet A. Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic-pharmacodynamic pattern in patients with Parkinson's disease. Mov Disord. 2005;20(6):734–739.

Lee MS, Lyoo CH, Ulmanen I, Syvanen AC, Rinne JO. Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson's disease. Neurosci Lett. 2001;298(2):131–134.

Bialecka M, Kurzawski M, Klodowska-Duda G, Opala G, Eng-King T, Drozdzik M, et al. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenet Genomics. 2008;18:815-821.

Xiao Q, Qian Y, Liu J, Xu S, Yang X. Roles of functional catechol-O- methyltransferase genotypes in Chinese patients with Parkinson's disease. Transl. Neurodegener. 2017;26:6–11.

Fox SH, Lang AE. Levodopa-related motor complications - phenomenology. Mov Disord. 2008;23 Suppl 3:S509-14.

de Lau LM, Verbaan D, Marinus J, Heutink P, van Hilten JJ. Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Mov Disord. 2012;27:132-135.

Wu H, Dong F, Wang Y, Xiao Q, Yang Q, Zhaoet J, et al. Catechol-O-methyltransferase Val158Met polymorphism: modulation of wearing-off susceptibility in a Chinese cohort of Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1094-1096.

Liu J, Chen P, Guo M, Lu L, Li L. Association of COMT Val158Met polymorphism with wearing-off susceptibility in Parkinson's disease. Neurol Sci. 2015;36:621–623.

Kurth MC, Adler CH, Hilaire MS, Singer C, Waters C, LeWitt P, et al. Tolcapone improves motor function and reduces levodopa requirement in patients with Parkinson's disease experiencing motor fluctuations: a multicenter, double-blind, randomized, placebo-controlled trial. Tolcapone Fluctuator Study Group I. Neurology. 1997;48:81–87.

Rajput H, Martin W, Saint-Hilaire MH, Dorflinger E, Pedder S. Tolcapone improves motor function in parkinsonian patients with the "wearing off" phenomenon: a double-blind, placebo-controlled, multicenter trial. Neurology. 1997;49:1066–1071.

Corvol JC, Bonnet C, Charbonnier-Beaupel F, Bonnet AM, Fiévet MH, Agnès Bellangeret A, et al. The COMT Val158Met polymorphism affects the response to entacapone in Parkinson's disease: a randomized crossover clinical trial. Ann Neurol. 2011;69(1):111–118.

Lee MS, Kim HS, Cho EK, Lim JH, Rinneet JO. COMT genotype and effectiveness of entacapone in patients with fluctuating Parkinson's disease. Neurology. 2002;58(4):564–567.

Kim JS, Kim JY, Kim JM, Kim JW, Chung SJ, Kim RN, et al. No correlation between COMT genotype and entacapone benefits in Parkinson's disease. Neurology Asia. 2011;16(3):211–216.

Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa‐induced dyskinesias. Mov Disord. 2007;22:1379– 1389.

Fabbrini G, Defazio G, Colosimo C, Suppa A, Bloise M, Berardelli A. Onset and spread of dyskinesias and motor symptoms in Parkinson's disease. Mov Disord. 2009;24:2091– 2096.

Watanabe M, Harada S, Nakamura T, Ohkoshi N, Yoshizawa K, Hayashi A, et al. Association between catechol-O-methyltransferase gene polymorphisms and wearing off and dyskinesia in Parkinson's disease. Neuropsychobiology. 2003;48(4):190–193.

Sampaio TF, Dos Santos EUD, de Lima GDC, Dos Anjos RSG, da Silva RC, Asano AGC, et al. MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease. J Clin Pharmacol. 2018;58(7):920–926.

Dos Santos EUD, da Silva IIFG, Asano AGC, Asano NMJ, De Mascena Diniz Maia M, de Souza PRE. Pharmacogenetic profile and the development of the dyskinesia induced by levodopa-therapy in Parkinson’s disease patients: a population-based cohort study. Mol Biol Rep. 2020:47(11):8997–9004.

Cheshire P, Bertram K, Ling H, O'Sullivan SS, Halliday G, McLean C, et al. Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegener Dis. 2014;13(1):24-28.

Ivanova SA, Alifirova VM, Pozhidaev IV, Freidin MB, Zhukova IA, Osmanova DZ, et al. Polymorphisms of catechol-O-methyl transferase (COMT) gene in vulnerability to levodopa-induced dyskinesia. J Pharm Pharm Sci. 2019;21(1):340-346.

Kakinuma S, Beppu M, Sawai S, Nakayama A, Hirano S, Yamanaka Y, et al. Monoamine oxidase B rs1799836 G allele polymorphism is a risk factor for early development of levodopa-induced dyskinesia in Parkinson’s disease. eNeurological Sci. 2020;19:100239.

Hao H, Shao M, An J, Chen C, Feng X, Xie S, et al. Association of catechol-O-methyltransferase and monoamine oxidase B gene polymorphisms with motor complications in Parkinson's disease in a Chinese population. Parkinsonism Relat Disord. 2014;20(10):1041–1045.

Yin Y, Liu Y, Xu M, Zhang XM, Li C. Association of COMT rs4680 and MAO‑B rs1799836 polymorphisms with levodopa‑induced dyskinesia in Parkinson’s disease—a meta‑analysis. Neurol Sci. 2021;42(10):4085-4094.

Dwivedi A, Dwivedi N, Kumar A, Singh VK, Pathak A, Chaurasia RN, et al. Association of Catechol-O-Methyltransferase Gene rs4680 Polymorphism and Levodopa Induced Dyskinesia in Parkinson's Disease: A Meta-Analysis and Systematic Review. J Geriatr Psychiatry Neurol. 2023;36(2):98-106.

Michałowska M, Chalimoniuk M, Jówko E, Przybylska I, Langfort J, Toczylowska B, et al. Gene polymorphisms and motor levodopa-induced complications in Parkinson's disease. Brain Behav. 2020;10:e01537.

Chang A, Fox SH. Psychosis in Parkinson's Disease: Epidemiology, Pathophysiology, and Management. Drugs. 2016;76:1093–1118.

Schneider RB, Iourinets J, Richard IH. Parkinson's disease psychosis: presentation, diagnosis, and management. Neurodegener Dis Manag. 2017;7:365-376.

Radojević B, Dragašević-Mišković N, Marjanović A, Branković M, Milovanović A, Tomić A, et al. Clinical and Genetic Analysis of Psychosis in Parkinson’s Disease. J Parkinsons Disease. 2021;11(4):1973-1980.

Camicioli R, Rajput A, Rajput M, Reece C, Payami H, Hao C, et al. Apolipoprotein E ε4 and catechol-O-methyltransferase alleles in autopsy-proven Parkinson's disease: Relationship to dementia and hallucinations. Mov Disord. 2005;20:989–994.

Creese B, Ballard C, Aarsland D, Londos E, Sharp S, Jones E. No association of COMT val158met polymorphism and psychotic symptoms in Lewy body dementias. Neurosci Lett. 2012;531:1–4.

Redenšek S, Flisar D, Kojović M, Gregoric Kramberger M, Georgiev D, Pirtošek Z, et al. Dopaminergic Pathway Genes Influence Adverse Events Related to Dopaminergic Treatment in Parkinson’s Disease. Front Pharmacol. 2019;10:8.

Bialecka M, Droz´dzik M, Kłodowska-Duda G, Honczarenko K, Gawron´ska-Szklarz B, Opala G, Stankiewicz J. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurol Scand. 2004:110:260–266.

Torkaman-Boutorabi A, Shahidi GA, Choopani S, Rezvani M, Pourkosary K, Golkar M, Zarrindast MR. The catechol-O-methyltransferase and monoamine oxidase B polymorphisms and levodopa therapy in Iranian patients with sporadic Parkinson's disease. Acta Neurobiol Exp. 2012;72(3):272-282.

Published
2024/02/22
Section
Review articles