Dietary antioxidants and health effects: what are their optimal intakes?
Abstract
A well-balanced diet provides many compounds with antioxidant properties, such as vitamins, minerals, provitamins (β-carotene), and phytochemicals (e.g., carotenoids, polyphenols, organosulfur compounds). In addition to direct antioxidants, foods indirectly support the endogenous defense system, by providing substrates for the synthesis of glutathione, antioxidant defense enzymes, metal-binding proteins, or modulators of redox-dependent signaling pathways. Epidemiological studies indicate that higher intakes and circulating concentrations of vitamins C, E, carotenoids, and flavonoids reflect a lower risk of chronic diseases and all-cause mortality, suggesting the importance of optimal intakes of these substances. However, unlike antioxidant micronutrients, phytochemicals have no defined recommended intake levels. A diet should be based on consuming various plant foods (fruit, vegetables, legumes, whole grains, seeds, nuts), antioxidant-rich beverages, and a moderate intake of animal food products to fully exploit the health-promoting effects of dietary antioxidants.
References
1. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89-96.
2. Halliwell B. Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res. 1996;25(1):57-74.
3. Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010;3(4):228-37.
4. Da Costa LA, Badawi A, El-Sohemy A. Nutrigenetics and modulation of oxidative stress. Ann Nutr Metab. 2012;60 Suppl 3:27-36.
5. Halliwell B. Antioxidant and anti-inflammatory components of foods. ILSI Europe Concise Monograph Series. Brussels: International Life Sciences Institute; 2015; pp. 1-34.
6. Harvard TH. Chan School of Public Health. The Nutrition Source [Internet]. Vitamins and Minerals [cited 2023 July 12]. Available from: https://www.hsph.harvard.edu/nutritionsource/vitamins/
7. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8(9):950–88.
8. Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML. Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev. 2010;68(10):571-603.
9. European Food Safety Authority (EFSA). Dietary Reference Values for nutrients Summary report. EFSA Support Publ. 2017;14:e15121E.
10. Yates AA, Dwyer JT, Erdman JW, King JC, Lyle BJ, Schneeman BO, et al; serving as an ad hoc Working Group on a Framework for Developing Recommended Intakes for Dietary Bioactives. Perspective: Framework for Developing Recommended Intakes of Bioactive Dietary Substances. Adv Nutr. 2021;12(4):1087-1099.
11. Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants. 2022;11(10):1993.
12. German Nutrition Society (DGE). New reference values for vitamin C intake. Ann Nutr Metab. 2015;67(1):13-20.
13. European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific opinion on dietary reference values for vitamin C. EFSA J Eur Food Saf Auth. 2013;11:3418.
14. Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A. 1996;93(8):3704-9.
15. Carr AC, Lykkesfeldt, J. Factors affecting the vitamin C dose-concentration relationship: implications for global vitamin C dietary recommendations. Nutrients. 2023;15:1657.
16. Xu K, Peng R, Zou Y, Jiang X, Sun Q, Song C. Vitamin C intake and multiple health outcomes: an umbrella review of systematic reviews and meta-analyses. Int J Food Sci Nutr. 2022;73(5):588-599.
17. Lykkesfeldt J. On the effect of vitamin C intake on human health: How to (mis)interpret the clinical evidence. Redox Biol. 2020;34:101532.
18. European Food Safety Authority Panel on Dietetic Products Nutrition and Allergies. Scientific Opinion on Dietary Reference Values for vitamin E as α-tocopherol. EFSA Journal. 2015;13(7):4149.
19. Rychter AM, Hryhorowicz S, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity - A narrative review. Clin Nutr. 2022;41(7):1557-1565.
20. Raederstorff D, Wyss A, Calder PC, Weber P, Eggersdorfer M. Vitamin E function and requirements in relation to PUFA. Br J Nutr. 2015;114(8):1113-22.
21. Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701-716.
22. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr. 2018;108(5):1069-1091.
23. Shah S, Shiekh Y, Lawrence JA, Ezekwueme F, Alam M, Kunwar S, Gordon DK. A systematic review of effects of vitamin E on the cardiovascular system. Cureus. 2021;13(6):e15616.
24. Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond). 2014;11(1):52.
25. Ighodaroab OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;(54):287-293.
26. Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases. Cell Metab. 2013;17(3):319-28.
27. Barchielli G, Capperucci A, Tanini D. The role of selenium in pathologies: an updated review. Antioxidants. 2022;11(2):251.
28. Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr. 2023;16 (10):1136458.
29. Danso OP, Asante-Badu B, Zhang Z, Song J, Wang Z, Yin X, Zhu R. Selenium biofortification: strategies, progress and challenges. Agriculture. 2023;13(2):416.
30. Weyh C, Krüger K, Peeling P, Castell L. The role of minerals in the optimal functioning of the immune system. Nutrients. 2022;14(3):644.
31. Meléndez-Martínez AJ, Mandić AI, Bantis F, Böhm V, Borge GIA, Brnčić M, et al. A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. Crit Rev Food Sci Nutr. 2022;62(8):1999-2049.
32. Crupi P, Faienza MF, Naeem MY, Corbo F, Clodoveo ML, Muraglia M. Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants. 2023;12(5):1069.
33. Souverein OW, de Vries JH, Freese R, Watzl B, Bub A, Miller ER, et al. Prediction of fruit and vegetable intake from biomarkers using individual participant data of diet-controlled intervention studies. Br J Nutr. 2015;113(9):1396-409.
34. Yuan L, Muli S, Huybrechts I, Nöthlings U, Ahrens W, Scalbert A, Floegel A. Assessment of fruit and vegetables intake with biomarkers in children and adolescents and their level of validation: a systematic review. Metabolites. 2022;12(2):126.
35. Donaldson MS. A carotenoid health index based on plasma carotenoids and health outcomes. Nutrients. 2011;3:1003-1022.
36. Böhm V, Lietz G, Olmedilla-Alonso B, Phelan D, Reboul E, Bánati D, et al. From carotenoid intake to carotenoid blood and tissue concentrations - implications for dietary intake recommendations. Nutr Rev. 2021;79(5):544-573.
37. Biesalski HK, Böhles H, Esterbauer H, Fürst P, Gey F, Hundsdörfer G, et al. Antioxidant vitamins in prevention. Clin Nutr. 2017;16 (3):151–155.
38. Lupton JR, Atkinson SA, Chang N, Fraga CG, Levy J, Messina M, et al. Exploring the benefits and challenges of establishing a DRI-like process for bioactives. Eur J Nutr. 2014;53:1-9.
39. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727-47.
40. Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr. 2005;81:215S-217S.
41. Brat P, Georgé S, Bellamy A, Du Chaffaut L, Scalbert A, Mennen L, et al. Daily polyphenol intake in France from fruit and vegetables. J Nutr. 2006;136(9):2368-73.
42. Amiot MJ, Latgé C, Plumey L, Raynal S. Intake estimation of phytochemicals in a French well-balanced diet. Nutrients. 2021;13(10):3628.
43. Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, Martínez-González MA, Covas MI, Corella D, et al. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis. 2013;23(10):953-9.
44. Godos J, Marventano S, Mistretta A, Galvano F, Grosso G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int J Food Sci Nutr. 2017;68(6):750-756.
45. Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81(1 Suppl):317S-325S.
46. Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, et al. Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients. 2019;11(6):1355.
47. Micek A, Godos J, Del Rio D, Galvano F, Grosso G. Dietary Flavonoids and cardiovascular disease: a comprehensive dose-response meta-analysis. Mol Nutr Food Res. 2021;65:e2001019.
48. Lu Y, Zhang M, Huang D. Dietary organosulfur-containing compounds and their health-promotion mechanisms. Annu Rev Food Sci Technol. 2022;13(1):287-313.
49. Miękus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C, Świergiel AH. Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules. 2020;25(17):3804.
50. Egbujor MC, Petrosino M, Zuhra K, Saso L. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects. Antioxidants. 2022;11(7):1255.
51. Wan Q, Li N, Du L, Zhao R, Yi M, Xu Q, et al. Allium vegetable consumption and health: An umbrella review of meta-analyses of multiple health outcomes. Food Sci Nutr. 2019;7(8):2451-2470.
52. Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Zhu K, Lim WH, et al. Cruciferous and Allium vegetable intakes are inversely associated with 15-year atherosclerotic vascular disease deaths in older adult women. J Am Heart Assoc. 2017;6(10):e006558.
53. Blekkenhorst LC, Bondonno CP, Lewis JR, Woodman RJ, Devine A, Bondonno NP, et al. Cruciferous and total vegetable intakes are inversely associated with subclinical atherosclerosis in older adult women. J Am Heart Assoc. 2018;7(8):e008391.
54. Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3.
55. Valtueña S, Pellegrini N, Franzini L, Bianchi MA, Ardigò D, Del Rio D, et al. Food selection based on total antioxidant capacity can modify antioxidant intake, systemic inflammation, and liver function without altering markers of oxidative stress. Am J Clin Nutr. 2008;87(5):1290-7.
56. Salari-Moghaddam A, Nouri-Majd S, Keshteli AH, Emami F, Esmaillzadeh A, Adibi P. Association between dietary total antioxidant capacity and diet quality in adults. Front Nutr. 2022;9:838752.
57. Cömert ED, Mogol BA, Gökmen V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr Res Food Sci. 2019;2:1-10.
58. Diet, nutrition and the prevention of chronic diseases: report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series, No. 916. Geneva: World Health Organization; 2003.
59. Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A global review of food-based dietary guidelines. Adv Nutr. 2019;10(4):590-605.
60. Harris J, de Steenhuijsen Piters B, McMullin S, Bajwa B, de Jager I, Brouwer ID. Fruits and vegetables for healthy diets: priorities for food system research and action. In: von Braun J, Afsana K, Fresco LO, Hassan MHA, editors. Science and Innovations for Food Systems Transformation. Springer, Cham; 2023; pp. 87–104. doi: 10.1007/978-3-031-15703-5_6.
61. Minich DM. A review of the science of colorful, plant-based food and practical strategies for "eating the rainbow". J Nutr Metab. 2019;2019:2125070.
62. Wright ME, Mayne ST, Stolzenberg-Solomon RZ, Li Z, Pietinen P, Taylor PR, et al. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol. 2004;160(1):68-76.
63. Wu M, Si J, Liu Y, Kang L, Xu B. Association between composite dietary antioxidant index and hypertension: insights from NHANES. Clin Exp Hypertens. 2023;45(1):2233712.
64. Han H, Chen S, Wang X, Jin J, Li X, Li Z. Association of the composite dietary antioxidant index with bone mineral density in the United States general population: data from NHANES 2005-2010. J Bone Miner Metab. 2023. doi: 10.1007/s00774-023-01438-7.
65. Chen Y, Tang W, Li H, Lv J, Chang L, Chen S. Composite dietary antioxidant index negatively correlates with osteoporosis among middle-aged and older US populations. Am J Transl Res. 2023;15(2):1300-1308.
66. Xu Q, Qian X, Sun F, Liu H, Dou Z, Zhang J. Independent and joint associations of dietary antioxidant intake with risk of post-stroke depression and all-cause mortality. J Affect Disord. 2023;322:84-90.
67. Wu D, Wang H, Wang W, Qing C, Zhang W, Gao X, et al. Association between composite dietary antioxidant index and handgrip strength in American adults: Data from National Health and Nutrition Examination Survey (NHANES, 2011-2014). Front Nutr. 2023;10:1147869.
68. Wang L, Yi Z. Association of the Composite dietary antioxidant index with all-cause and cardiovascular mortality: A prospective cohort study. Front Cardiovasc Med. 2022;9:993930.